Additional Exercises on PAC-Learning and VC-Dimension
(Problems are from previous years’ exams)
(CS-526 Learning Theory

Short problems

1. [Several correct answers are possible.] Let H = {hp}sco be a hypothesis class such that
VCdim(H) = +o0o. Then the set of parameters ©:
(a) is finite
(b) can be countable
) can be uncountable
)

(c

(d) can be finite, countable or uncountable
2. Consider some hypothesis class H. Which of the following is true? Why or why not?

(a) If |H| is infinite, it is not PAC learnable.

(b) If H is PAC learnable, it has finite VC dimension.

(c) If H is specified by a finite number of parameters, it has finite VC dimension.
(d) If H = Hy U Hs, where H; and Hy are some hypothesis classes that are PAC
learnable, then H is also PAC learnable.

3. Let H be the class of indicator functions defined by the intervals over R, H = {hg :
a,b € R,a < b} where hop(r) = Lpg(ap). What is the VC dimension of H?

4. Let H be the class of indicator functions defined by the intervals over R, H = {hapc.d :
a,b,c,d € Ra < b,c < d} where hoped() = Lpe@p) or ze(ea). What is the VC
dimension of H?

VC dimension of unbiased neurons
Let H = {hay.0,(X) : a1, a2 € R} with

Ray 0 (x) = I( tanh(aiz1 + aozs) > 0)
1. What is VCdim(#)? Call your answer d.
2. Show that VCdim(H) > d?
3. Show that VCdim(H) < d?

VC dimension of union

Let H1, Ha, . .., H, be hypothesis classes over some fixed domain set X'. Let d = max; VCdim(H,;)
and assume that d > 2.

Prove that:



1. VCdim(|J_, H;) < -4 log( 2d )+21og(r)_

, log(2) log(2)/ ' log(2) i ) )
Hint: Use Sauer’s lemma for bounding the growth function and the inequality

“Let a > 1 and b > 0. If v < alog(x) + b then x < 4alog(2a) + 2b.”

2. For r = 2 the bound can be strengthen to VCdim(H; U Hz) < 2d + 1.
Hint: Z?:o (If) =2k

Stability implies Generalization
Let S = {(x1,11), (x2,y2), ..., (Tn,yn)} be a training dataset composed of n i.i.d. samples
drawn from D. As usual, we denote Lp(h) = E y)~pll(h(z),y)] and Ls(h) = £ 31 1(h(z;), y:)
the true and empirical risks of a hypothesis h, respectively. For simplicity, let us denote by
hs the output of a learning algorithm when trained with dataset S.

An important property of learning algorithms is their ability to generalize, i.e., the true
and empirical risks of the output hypothesis should be close in expectation. Formally, we

say that a learning algorithm A e-generalizes in expectation if
[Es[Ls(hs) — Lp(hs)]| <e. (1)

An interesting connection arises when we investigate the stability of a learning algorithm.
Formally, we call a learning algorithm e-uniformly stable if VS, S’ datasets of size n that
differ in at most one example we have

sup l(hs(z),y) = l(hs (2),y) < €. (2)

(z,y)

Notations: (z1,y1), (2,Y2), -+, (Tn, Yn)s (T1,91), - -, (Tn, Un) ‘are 2n independently sampled
training examples. We define S = {(z1,v1),...,(@n,yn)}, S = {(Z1,71),- -, (ZTn,¥n)} and

S(Z) = {(371, 3/1)7 ) ('riflvyi*1>7 (§Z7§1>7 ($i+17 yi+1)7 SR (meyn)}
Prove that:

L. Lp(hs) = Egly; 30, 1(hs (7). i)
2. Eg5ll(hs(7:), yi)] = Eg s [l(hse (2:), )]
3. An e-uniformly stable learning algorithm e-generalizes in expectation.

VC dimension of decision trees with binary features

In this problem, we consider the class Hpyree of decision trees with binary features and binary
labels. We have a set of samples 2, ..., 2™ where 2 € {0,1}¢. A decision tree is a
classifier that returns the binary label y for a sample x after performing a series of tests of
the type "x; = 07”7 for 0 < i < d, which are organized in a binary tree-like manner. Nodes
of this tree correspond to the tests and leaves to the returned label values. Note that it is
allowed to return the same label value from both branches.

1. Consider the subclass H; of trees with a single decision node (see Fig. 1). Show that

VCdim#H, < [logy(d+1)] + 1.



Figure 2: Example of degenerate tree with NV = 3 nodes.

2. Show that
VCdim?H, > [logy(d+1)] + 1.

3. Consider the subclass Hgeq v 0of degenerate trees. Now the tree has N decision nodes
but each node except the bottom one has a single child node (see Fig. 2). Prove that

VCdim'Hde%N > Uogz(d — N + 2” + N.

Hint: Start from the case N = 1. What changes when we add another node to the
tree?

Expectation Learnability

Assume that the realizability assumption holds throughout the problem.

A hypothesis class ‘H is Expectation learnable (E learnable) if there exists a function
mgf ) (0,1) — N and a learning algorithm with the following property: For every v € (0, 1),
for every distribution D over X, and for every labeling function f : X — {0,1}, when
running the learning algorithm on a set S of m > mgf ) () i.i.d. examples generated by D

and labeled by f, the algorithm returns a hypothesis h (which depends on S) such that

3



E[L(p,z)(h)] <~ (where the expectation is taken over the training set S). Recall that the
error of a prediction is defined to be

L) (h) := Poplh(x) # f(x)].
1. Show that if a hypothesis class H is E learnable, then it is PAC learnable.
2. Show that if a hypothesis class H is PAC learnable, then it is E learnable.
3. Show that every finite hypothesis class H is E learnable with sample complexity

miy)(7) < [—2102(@)]

Hint: You can use results proved in the course, and the relation between sample
complexity of PAC learning and E learning derived in previous parts.



