
Solution to Exercises on PAC-Learning and VC-Dimension
CS-526 Learning Theory

Short problems

1. B and C.The set Θ parametrizing the hypothesis class must be infinite: if H has finite
cardinality then VCdim(H) ≤ log |H|. In the second graded homework, we studied the
hypothesis class H = {dsin(θπ.)e}θ∈Θ and proved that it has an infinite VC dimension
if Θ = {2n}n∈N (and by extension θ = R). Therefore B and C are correct.

2. (a) False. If H has finite VC dimension then it is PAC learnable due to the Funda-
mental theorem of Statistical learning.

(b) True. According to the Fundamental theorem of Statistical learning.

(c) False. We saw in the homework that there are hypotheses classes with infinite
VC dimension that are specified by a single parameter.

(d) True. If H1,H2 have finite VC dimension then the VC dimension of their union
is also finite and therefore H is also PAC learnable.

3. The VC dimension is 2: A set of size 2 can be shattered by H, but for a set of size 3
with elements x1 < x2 < x3 the labeling (0, 1, 0) cannot be obtained by any ha,b ∈ H.
Therefore, the VC dimension is 2.

4. The VC dimension is 4: A set of size 4 can be shattered, but a set of size 5 with
elements x1 < . . . < x5 with labels (1, 0, 1, 0, 1) cannot be obtained by any ha,b,c,d ∈ H.
Therefore, the VC dimension is 4.

VC dimension of unbiased neurons
Note that tanh does not change the sign of α1x1 + α2x2, so we don’t need to bother with
the tanh in analysis.

VCdim(H) ≥ 2: given any two samples (x(1), y(1)) and (x(2), y(2)) with x(1) and x(2) lin-
early independent, we can find valid α1, α2 by solving[

x(1)

x(2)

] [
α1

α2

]
=

[
b(1)

b(2)

]
where b(i) is any real numbers that has the same sign with (−1)1+y(i) .

VCdim(H) ≤ 2: For any three points x(1),x(2),x(3) one can propose y(1), y(2), y(3) such

that H does not shatter the 3 points. This amounts to showing that there exists y(1), y(2), y(3)

such that x(1)

x(2)

x(3)

[α1

α2

]
=

b(1)

b(2)

b(3)

 (1)
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has no solutions, with b(i) as defined above. In R2 any three points are linearly dependent.
So (1) is degenerated. We can assume x(3) = w1x

(1) + w2x
(2) for some w1, w2 ∈ R. Suppose

y(1), y(2) allows a solution of α1, α2 for the first two equations of (1). However, if one chooses

y(3) such that
∑2

i=1

∑2
j=1wiαjx

(i)
j has a different sign from (−1)1+y(3) , then (1) has no solu-

tion.

VC dimension of union

1. Let H =
⋃r
i=1Hi. By definition of the growth function we have τH(m) ≤

∑r
i=1 τHi(m)

for any set of m points. If k > d + 1 points are shattered by H then 2k = τH(k) ≤∑r
i=1 τHi(k) ≤ rkd, where the last inequality follows directly from Sauer’s lemma.

Taking the logarithm on both sides and using the inequality yields

k ≤ 4d

log(2)
log

(
2d

log(2)

)
+ 2

log(r)

log(2)
.

Note that this inequality is trivially satisfied if k ≤ d+ 1.

2. Assume that k ≥ 2d+ 2. It is enough to prove that τH1∪H2(k) < 2k.

τH1∪H2(k) ≤ τH1(k) + τH2(k) ≤
d∑
i=0

(
k

i

)
+

d∑
i=0

(
k

i

)
=

=
d∑
i=0

(
k

i

)
+

d∑
i=0

(
k

k − i

)
=

d∑
i=0

(
k

i

)
+

k∑
i=k−d

(
k

i

)
≤

≤
d∑
i=0

(
k

i

)
+

k∑
i=d+2

(
k

i

)
<

d∑
i=0

(
k

i

)
+

k∑
i=d+1

(
k

i

)
=

=
k∑
i=0

(
k

i

)
= 2k

Lemma (Sauer-Shelah-Perles) Let H be a hypothesis class with V Cdim(H) ≤ d <
∞ and growth function τH. Then, for all m, τH(m) ≤

∑d
i=0

(
m
i

)
. In particular, if m > d+ 1

and d > 2 then τH(m) < md.

Stability implies Generalization

1. Note that since S̃ is composed of n i.i.d. samples LD(hS) = E(x̃i,ỹi)∼D[l(hS(x̃i), ỹi)] for
all i. Thus, by linearity of expectation LD(hS) = ES̃[ 1

n

∑n
i=1 l(hS(x̃i), ỹi)].

2.

ES,S̃[l(hS(x̃i), ỹi)] = ES,(x̃i,ỹi)[l(hS(x̃i), ỹi)] =

(since (x1, y1), . . . , (xn, yn), (x̃i, ỹi) are i.i.d. we can interchange (xi, yi) with (x̃i, ỹi) )

= ES(i),(xi,yi)[l(hS(i)(xi), yi)]
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3.

|ES[LS(hS)− LD(hS)]| (1)
= |ES

[
LS(hS)− ES̃

[
1
n

∑n
i=1 l(hS(x̃i), ỹi)

]]
| =

= |ES [LS(hS)]− ES,S̃
[

1
n

∑n
i=1 l(hS(x̃i), ỹi)

]
| =

= |ES [LS(hS)]− 1
n

∑n
i=1ES,S̃ [l(hS(x̃i), ỹi)] |

(2)
=

= |ES [LS(hS)]− 1
n

∑n
i=1ES(i),(xi,yi) [l(hS(i)(xi), yi)] | =

= |ES
[

1
n

∑n
i=1 l(hS(xi), yi))

]
− 1

n

∑n
i=1 ES,S(i) [l(hS(i)(xi), yi)] | =

= | 1
n

∑n
i=1 ES,S(i) [l(hS(xi), yi))− l(hS(i)(xi), yi)] |

( ε-uniform stability)

≤
≤ 1

n

∑n
i=1 ε = ε

VC dimension of decision trees with binary features

1. For each feature i, there exist two trivial decision trees (that both return zero or both
return one) and two non-trivial ones (the one that returns 0 if xi = 1 and 1 otherwise
and the one that returns 1 if xi = 1 and 0 otherwise). Therefore, with d features we
can have at most 2d+ 2 distinct labelings. In order to shatter m samples, we need to
obtain all 2m possible labelings, hence we have the bound

2d+ 2 ≥ 2m.

Resolving for m we get the stated upper bound.

2. To prove the lower bound, we need to construct the set of m = blog2(d+1)c+1 samples
that is shattered. To do this, take the set of all possible labelings except all-zero and
all-one and for each labeling (y1, . . . , ym) remove its complement from the set. This
leaves 2m−1 − 1 distinct labelings y(i). Now we create the samples x(1), . . . , x(m) s.t.
x

(j)
i = y

(i)
j for 1 ≤ j ≤ m, 1 ≤ i ≤ 2m−1 − 1 = d. It remains to notice that a tree with

node xi = 0? gives either the labeling y(i) or its complement (if we reverse the labels
on branches) and in addition all-one and all-zero labelings if both branches return the
same label, which completes the proof.

3. We need to construct the set of m = blog2(d−N + 2)c+N samples on which we get
all 2m possible labels. We start from the case of one bottom node, with d = 2m−1 − 1
features for m samples. Now assume we get an extra feature xd+1 and an extra sample

s.t. x
(m+1)
d+1 = 1 and x

(m+1)
i = 0 for i 6= d+1 (x

(i)
d+1 = 0 for i < m+1). We create a parent

node that contains the existing node and our new sample as children and the splitting
rule is the new feature. The new splitting rule allows to label x(m+1) independently of
other x(i), so we get all possible labelings on m + 1 samples. This procedure can be
performed N − 1 times since we have N decision nodes in the tree. Therefore, for m
samples we have d = 2m−1−(N−1)− 1 + (N − 1) = 2m−N +N − 2 features that generate
all 2m possible labelings.

Expectation Learnability
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1. Set γ = εδ. By the E learnability, the algorithm running on m ≥ m
(E)
H (εδ) samples

returns a hypothesis h so that E
[
L(D,f)(h)

]
≤ εδ. Using the Markov inequality, we

have:

P
[
L(D,f)(h) ≥ ε

]
≤

E
[
L(D,f)(h)

]
ε

≤ εδ

ε
= δ.

Moreover, the number of samples needed to generate h is bounded by a function in
εδ, which is a function in ε, δ. Therefore, the requirements of the PAC learnability are
satisfied.

2. Set ε = γ
2
, δ = γ

2
, then by PAC learnability, we have an algorithm that running on

m ≥ m
(PAC)
H

(
γ
2
, γ

2

)
samples returns a hypothesis h so that P

[
L(D,f)(h) > γ

2

]
≤ γ

2
. We

have

E
[
L(D,f)(h)

]
= E

[
L(D,f)(h)|L(D,f)(h) ≤ γ

2

]
P
[
L(D,f)(h) ≤ γ

2

]
+ E

[
L(D,f)(h)|L(D,f)(h) >

γ

2

]
P
[
L(D,f)(h) >

γ

2

]
≤ γ

2
P
[
L(D,f)(h) ≤ γ

2

]
+ E

[
L(D,f)(h)|L(D,f)(h) >

γ

2

]γ
2

≤ γ

2
+
γ

2
= γ

where the last inequality is due to the boundedness of L(D,f)(h), since probability is
bounded by 1.

Moreover, the number of samples needed to generate h is bounded by a function in
ε = γ

2
, δ = γ

2
which is a function in γ. Therefore, the requirements of the E learnability

are satisfied.

3. From the course, we know that every finite hypothesis class is PAC learnable with

sample complexity m
(PAC)
H (ε, δ) ≤

⌈
log
(

|H|
δ

)
ε

⌉
. Setting ε = γ

2
, δ = γ

2
, we get the result.
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