Short problems

- 1. **B** and **C**. The set Θ parametrizing the hypothesis class must be infinite: if \mathcal{H} has finite cardinality then VCdim $(\mathcal{H}) \leq \log |\mathcal{H}|$. In the second graded homework, we studied the hypothesis class $\mathcal{H} = \{ [\sin(\theta \pi)] \}_{\theta \in \Theta}$ and proved that it has an infinite VC dimension if $\Theta = \{2n\}_{n \in \mathbb{N}}$ (and by extension $\theta = \mathbb{R}$). Therefore B and C are correct.
- 2. (a) False. If \mathcal{H} has finite VC dimension then it is PAC learnable due to the Fundamental theorem of Statistical learning.
 - (b) True. According to the Fundamental theorem of Statistical learning.
 - (c) False. We saw in the homework that there are hypotheses classes with infinite VC dimension that are specified by a single parameter.
 - (d) True. If $\mathcal{H}_1, \mathcal{H}_2$ have finite VC dimension then the VC dimension of their union is also finite and therefore \mathcal{H} is also PAC learnable.
- 3. The VC dimension is 2: A set of size 2 can be shattered by \mathcal{H} , but for a set of size 3 with elements $x_1 < x_2 < x_3$ the labeling (0, 1, 0) cannot be obtained by any $h_{a,b} \in \mathcal{H}$. Therefore, the VC dimension is 2.
- 4. The VC dimension is 4: A set of size 4 can be shattered, but a set of size 5 with elements $x_1 < \ldots < x_5$ with labels (1, 0, 1, 0, 1) cannot be obtained by any $h_{a,b,c,d} \in \mathcal{H}$. Therefore, the VC dimension is 4.

VC dimension of unbiased neurons

Note that tanh does not change the sign of $\alpha_1 x_1 + \alpha_2 x_2$, so we don't need to bother with the tanh in analysis.

 $\underline{\text{VCdim}(\mathcal{H}) \geq 2}$: given any two samples $(\mathbf{x}^{(1)}, y^{(1)})$ and $(\mathbf{x}^{(2)}, y^{(2)})$ with $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ linearly independent, we can find valid α_1, α_2 by solving

$$\begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b^{(1)} \\ b^{(2)} \end{bmatrix}$$

where $b^{(i)}$ is any real numbers that has the same sign with $(-1)^{1+y^{(i)}}$.

<u>VCdim(\mathcal{H}) ≤ 2 </u>: For any three points $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}$ one can propose $y^{(1)}, y^{(2)}, y^{(3)}$ such that \mathcal{H} does not shatter the 3 points. This amounts to showing that there exists $y^{(1)}, y^{(2)}, y^{(3)}$ such that

$$\begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \mathbf{x}^{(3)} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} b^{(1)} \\ b^{(2)} \\ b^{(3)} \end{bmatrix}$$
(1)

has no solutions, with $b^{(i)}$ as defined above. In \mathbb{R}^2 any three points are linearly dependent. So (1) is degenerated. We can assume $\mathbf{x}^{(3)} = w_1 \mathbf{x}^{(1)} + w_2 \mathbf{x}^{(2)}$ for some $w_1, w_2 \in \mathbb{R}$. Suppose $y^{(1)}, y^{(2)}$ allows a solution of α_1, α_2 for the first two equations of (1). However, if one chooses $y^{(3)}$ such that $\sum_{i=1}^2 \sum_{j=1}^2 w_i \alpha_j x_j^{(i)}$ has a different sign from $(-1)^{1+y^{(3)}}$, then (1) has no solution.

VC dimension of union

1. Let $\mathcal{H} = \bigcup_{i=1}^{r} \mathcal{H}_{i}$. By definition of the growth function we have $\tau_{\mathcal{H}}(m) \leq \sum_{i=1}^{r} \tau_{\mathcal{H}_{i}}(m)$ for any set of m points. If k > d + 1 points are shattered by \mathcal{H} then $2^{k} = \tau_{\mathcal{H}}(k) \leq \sum_{i=1}^{r} \tau_{\mathcal{H}_{i}}(k) \leq rk^{d}$, where the last inequality follows directly from Sauer's lemma. Taking the logarithm on both sides and using the inequality yields

$$k \le \frac{4d}{\log(2)} \log\left(\frac{2d}{\log(2)}\right) + 2\frac{\log(r)}{\log(2)}$$

Note that this inequality is trivially satisfied if $k \leq d+1$.

2. Assume that $k \geq 2d + 2$. It is enough to prove that $\tau_{\mathcal{H}_1 \cup \mathcal{H}_2}(k) < 2^k$.

$$\begin{aligned} \tau_{\mathcal{H}_{1}\cup\mathcal{H}_{2}}(k) &\leq \tau_{\mathcal{H}_{1}}(k) + \tau_{\mathcal{H}_{2}}(k) \leq \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=0}^{d} \binom{k}{i} = \\ &= \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=0}^{d} \binom{k}{k-i} = \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=k-d}^{k} \binom{k}{i} \leq \\ &\leq \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=d+2}^{k} \binom{k}{i} < \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=d+1}^{k} \binom{k}{i} = \\ &= \sum_{i=0}^{k} \binom{k}{i} = 2^{k} \end{aligned}$$

Lemma (Sauer-Shelah-Perles) Let \mathcal{H} be a hypothesis class with $VCdim(H) \leq d < \infty$ and growth function $\tau_{\mathcal{H}}$. Then, for all m, $\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} {m \choose i}$. In particular, if m > d+1 and d > 2 then $\tau_{\mathcal{H}}(m) < m^{d}$.

Stability implies Generalization

- 1. Note that since \tilde{S} is composed of n i.i.d. samples $L_{\mathcal{D}}(h_S) = E_{(\tilde{x}_i, \tilde{y}_i) \sim \mathcal{D}}[l(h_S(\tilde{x}_i), \tilde{y}_i)]$ for all i. Thus, by linearity of expectation $L_{\mathcal{D}}(h_S) = E_{\tilde{S}}[\frac{1}{n}\sum_{i=1}^n l(h_S(\tilde{x}_i), \tilde{y}_i)].$
- 2.

$$\begin{split} E_{S,\tilde{S}}[l(h_S(\tilde{x}_i),\tilde{y}_i)] &= E_{S,(\tilde{x}_i,\tilde{y}_i)}[l(h_S(\tilde{x}_i),\tilde{y}_i)] = \\ (since \ (x_1,y_1),\ldots,(x_n,y_n),(\tilde{x}_i,\tilde{y}_i) \ are \ i.i.d. \ we \ can \ interchange \ (x_i,y_i) \ with \ (\tilde{x}_i,\tilde{y}_i) \) \\ &= E_{S^{(i)},(x_i,y_i)}[l(h_{S^{(i)}}(x_i),y_i)] \end{split}$$

$$\begin{aligned} |E_{S}[L_{S}(h_{S}) - L_{\mathcal{D}}(h_{S})]| \stackrel{(1)}{=} |E_{S}\left[L_{S}(h_{S}) - E_{\tilde{S}}\left[\frac{1}{n}\sum_{i=1}^{n}l(h_{S}(\tilde{x}_{i}),\tilde{y}_{i})\right]\right]| = \\ &= |E_{S}\left[L_{S}(h_{S})\right] - E_{S,\tilde{S}}\left[\frac{1}{n}\sum_{i=1}^{n}l(h_{S}(\tilde{x}_{i}),\tilde{y}_{i})\right]| = \\ &= |E_{S}\left[L_{S}(h_{S})\right] - \frac{1}{n}\sum_{i=1}^{n}E_{S,\tilde{S}}\left[l(h_{S}(\tilde{x}_{i}),\tilde{y}_{i})\right]| \stackrel{(2)}{=} \\ &= |E_{S}\left[L_{S}(h_{S})\right] - \frac{1}{n}\sum_{i=1}^{n}E_{S^{(i)},(x_{i},y_{i})}\left[l(h_{S^{(i)}}(x_{i}),y_{i})\right]| = \\ &= |E_{S}\left[\frac{1}{n}\sum_{i=1}^{n}l(h_{S}(x_{i}),y_{i}))\right] - \frac{1}{n}\sum_{i=1}^{n}E_{S,S^{(i)}}\left[l(h_{S^{(i)}}(x_{i}),y_{i})\right]| = \\ &= |\frac{1}{n}\sum_{i=1}^{n}E_{S,S^{(i)}}\left[l(h_{S}(x_{i}),y_{i})) - l(h_{S^{(i)}}(x_{i}),y_{i})\right]| \stackrel{(\epsilon\text{-uniform stability})}{\leq} \\ &\leq \frac{1}{n}\sum_{i=1}^{n}\epsilon = \epsilon \end{aligned}$$

VC dimension of decision trees with binary features

1. For each feature *i*, there exist two trivial decision trees (that both return zero or both return one) and two non-trivial ones (the one that returns 0 if $x_i = 1$ and 1 otherwise and the one that returns 1 if $x_i = 1$ and 0 otherwise). Therefore, with *d* features we can have at most 2d + 2 distinct labelings. In order to shatter *m* samples, we need to obtain all 2^m possible labelings, hence we have the bound

$$2d+2 \ge 2^m.$$

Resolving for m we get the stated upper bound.

- 2. To prove the lower bound, we need to construct the set of $m = \lfloor \log_2(d+1) \rfloor + 1$ samples that is shattered. To do this, take the set of all possible labelings except all-zero and all-one and for each labeling (y_1, \ldots, y_m) remove its complement from the set. This leaves $2^{m-1} - 1$ distinct labelings $y^{(i)}$. Now we create the samples $x^{(1)}, \ldots, x^{(m)}$ s.t. $x_i^{(j)} = y_j^{(i)}$ for $1 \le j \le m, 1 \le i \le 2^{m-1} - 1 = d$. It remains to notice that a tree with node $x_i = 0$? gives either the labeling $y^{(i)}$ or its complement (if we reverse the labels on branches) and in addition all-one and all-zero labelings if both branches return the same label, which completes the proof.
- 3. We need to construct the set of $m = \lfloor \log_2(d N + 2) \rfloor + N$ samples on which we get all 2^m possible labels. We start from the case of one bottom node, with $d = 2^{m-1} - 1$ features for m samples. Now assume we get an extra feature x_{d+1} and an extra sample s.t. $x_{d+1}^{(m+1)} = 1$ and $x_i^{(m+1)} = 0$ for $i \neq d+1$ ($x_{d+1}^{(i)} = 0$ for i < m+1). We create a parent node that contains the existing node and our new sample as children and the splitting rule is the new feature. The new splitting rule allows to label $x^{(m+1)}$ independently of other $x^{(i)}$, so we get all possible labelings on m + 1 samples. This procedure can be performed N - 1 times since we have N decision nodes in the tree. Therefore, for msamples we have $d = 2^{m-1-(N-1)} - 1 + (N-1) = 2^{m-N} + N - 2$ features that generate all 2^m possible labelings.

Expectation Learnability

1. Set $\gamma = \epsilon \delta$. By the E learnability, the algorithm running on $m \ge m_{\mathcal{H}}^{(E)}(\epsilon \delta)$ samples returns a hypothesis h so that $\mathbb{E}[L_{(\mathcal{D},f)}(h)] \le \epsilon \delta$. Using the Markov inequality, we have:

$$\mathbb{P}[L_{(\mathcal{D},f)}(h) \ge \epsilon] \le \frac{\mathbb{E}[L_{(\mathcal{D},f)}(h)]}{\epsilon} \le \frac{\epsilon\delta}{\epsilon} = \delta.$$

Moreover, the number of samples needed to generate h is bounded by a function in $\epsilon \delta$, which is a function in ϵ, δ . Therefore, the requirements of the PAC learnability are satisfied.

2. Set $\epsilon = \frac{\gamma}{2}, \delta = \frac{\gamma}{2}$, then by PAC learnability, we have an algorithm that running on $m \ge m_{\mathcal{H}}^{(\text{PAC})}\left(\frac{\gamma}{2}, \frac{\gamma}{2}\right)$ samples returns a hypothesis h so that $\mathbb{P}\left[L_{(\mathcal{D},f)}(h) > \frac{\gamma}{2}\right] \le \frac{\gamma}{2}$. We have

$$\mathbb{E}\left[L_{(\mathcal{D},f)}(h)\right] = \mathbb{E}\left[L_{(\mathcal{D},f)}(h)|L_{(\mathcal{D},f)}(h) \leq \frac{\gamma}{2}\right]\mathbb{P}\left[L_{(\mathcal{D},f)}(h) \leq \frac{\gamma}{2}\right] \\ + \mathbb{E}\left[L_{(\mathcal{D},f)}(h)|L_{(\mathcal{D},f)}(h) > \frac{\gamma}{2}\right]\mathbb{P}\left[L_{(\mathcal{D},f)}(h) > \frac{\gamma}{2}\right] \\ \leq \frac{\gamma}{2}\mathbb{P}\left[L_{(\mathcal{D},f)}(h) \leq \frac{\gamma}{2}\right] + \mathbb{E}\left[L_{(\mathcal{D},f)}(h)|L_{(\mathcal{D},f)}(h) > \frac{\gamma}{2}\right]\frac{\gamma}{2} \\ \leq \frac{\gamma}{2} + \frac{\gamma}{2} = \gamma$$

where the last inequality is due to the boundedness of $L_{(\mathcal{D},f)}(h)$, since probability is bounded by 1.

Moreover, the number of samples needed to generate h is bounded by a function in $\epsilon = \frac{\gamma}{2}, \delta = \frac{\gamma}{2}$ which is a function in γ . Therefore, the requirements of the E learnability are satisfied.

3. From the course, we know that every finite hypothesis class is PAC learnable with sample complexity $m_{\mathcal{H}}^{(\text{PAC})}(\epsilon, \delta) \leq \left\lceil \frac{\log\left(\frac{|\mathcal{H}|}{\delta}\right)}{\epsilon} \right\rceil$. Setting $\epsilon = \frac{\gamma}{2}, \delta = \frac{\gamma}{2}$, we get the result.