
Artificial Neural Networks (Gerstner). Solutions for week 6

From Policy Gradient to Actor-Critic

Exercise 1. Computer exercises: Environment 2 (part 2)1

Complete the computer exercise for environment 2.

Exercise 2. From Policy Gradient to eligibility traces

In this exercise you will show that eligibility traces appear naturally in any policy gradient algorithm.
Eligibility traces are nice because they lead to a transparent and easy–to–interpret algorithm. More-
over, eligibility traces enable a direct online implementation of the algorithm in distributed hardware
(or biology).

Consider a discrete multistep reinforcement learning problem with the usual graph, the usual notations
and transitions: an action at leads you (stochastically) from state st to st+1 and on this transition you
collect the reward rt. Suppose that you always start in state st=0 = sstart. We assume that there is a
simple terminal state starget. You get a particularly strong positive reward when you reach starget.

Your policy π(at|st; θ) depends on parameters θ. For the moment your aim is to optimize the param-
eters of the policy such that you maximize the expected discounted reward

Eθ[Return(sstart → starget)] = Eθ[r0 + γr1 + γ2r2 + ...].

We proceed in five steps.

a. Derive a batch version of the policy gradient algorithm over multiple time steps by optimizing
Eθ[Return(sstart → starget)] through gradient descent.

Hint : Use the log-likelihood trick and take the derivative with respect to parameter θj .

b. A batch algorithm means averaging over many episodes. Transform the batch algorithm into
an online algorithm where you consider one episode at a time. Assume that in one episode you
traverse the state-action sequence: s0, a0, r0; s1, a1, r1; s2, a2, r2; s3, a3, r3; s4, a4, r4; s5 = starget.

Show that the parameter updates can be written as

∆θj = [r0 + γr1 + γ2r2 + γ3r3 + γ4r4]
∂

∂θj
log[π(a0|s0; θ)]

+ [γr1 + γ2r2 + γ3r3 + γ4r4]
∂

∂θj
log[π(a1|s1; θ)]

+ [γ2r2 + γ3r3 + γ4r4]
∂

∂θj
log[π(a2|s2; θ)]

+ [γ3r3 + γ4r4]
∂

∂θj
log[π(a3|s3; θ)]

+ γ4r4
∂

∂θj
log[π(a4|s4; θ)] (1)

c. So far we were only interested in maximizing the discounted future reward from the INITIAL
state, with the discount factor computed relative to that state (t = 0). However, while you move
along the trajectory you pass by other states s1, s2, s3, s4. For each of these states st, you should
now also optimize the future expected discounted reward starting from st; that is you want to
maximize

Eθ[Return(st → starget)] = Eθ[rt + γrt+1 + γ2rt+2 + ...].

1Start this exercise in the first exercise session of week 6.



More generally, you should optimize the future discounted returns from every step t, assuming
that the discounting started at the current step or at any possible step m in the past (i.e. m ≤ t).
Assume that m runs from −∞ to t.

Redo the calculation in (b), but calculate the parameter update resulting from returns starting
in arbitrary states.

Hint : Copy, but time-shift the results from (b).

d. Sum all the updates from (b) and (c) and reorder all terms such that updates that are multiplied
with the same reward are grouped together.

Show that this results in updates of the form

∆θj = (2)

c
∑
t

rt

[
∂

∂θj
log[π(at|st; θ)] + γ

∂

∂θj
log[π(at−1|st−1; θ)] + γ2

∂

∂θj
log[π(at−2|st−2; θ)] + ...

]
(3)

with some constant c. What is this constant?

e. Now we introduce eligibility traces by defining for each parameter θj a ‘shadow variable’ zj
which, in each time step t, decreases by a factor λ < 1

zj ←− λzj (4)

and then (in the same time step) increase by an amount

zj ←−
∂

∂θj
log[π(at|st; θ)] (5)

where at is the action taken in time step t.

What is the relation of λ and γ? What is the final weight update?

f. Suppose that all rewards are zero, except the reward in the final time step r4 > 0. Furthermore
suppose that parameter θ is only sensitive to a2, s2. To be specific, say ∂

∂θj
log[π(a2|s2; θ)] > 0

and ∂
∂θj

log[π(at|st; θ)] = 0 for t 6= 2.

How can you interpret the resulting algorithm? How much will the parameter θj change?

Solution:

a. We show the total discounted reward from time t = 0 by

G0 = r0 + γr1 + γ2r2 + . . . .+ γT rT ,

where we assume that the episode had T steps. Our goal is to maximize the expected return
under the current policy

Vθ(s0) = Eθ[G0|s0].

We can use the law of total expectation and write

Eθ[G0|s0] = Eθ [E[G0|s0:T , a0:T−1]|s0]

=

∫
E[G0|s0:T , a0:T−1]

T−1∏
τ=0

p(sτ+1|aτ , sτ )π(aτ |sτ ; θ) da0:T−1 ds1:T ,

where we define a0:T−1 = {a0, . . . , aT−1} and s0:T = {s0, . . . , sT } and note that the term
E[G0|s0:T , a0:T−1] does not depend on the parameters θ.



We can now use log-likelihood trick and write

∂Eθ[G0|s0]
∂θj

=

∫
E[G0|s0:T , a0:T−1]

∂

∂θj

T−1∏
τ=0

p(sτ+1|aτ , sτ )π(aτ |sτ ; θ) da0:T−1 ds1:T (6)

=

∫
E[G0|s0:T , a0:T−1]

T−1∏
τ=0

p(sτ+1|aτ , sτ )π(aτ |sτ ; θ)

[
T−1∑
τ=0

∂

∂θj
log π(aτ |sτ ; θ)

]
da0:T−1 ds1:T

(7)

= Eθ

[
G0

T−1∑
τ=0

∂

∂θj
log π(aτ |sτ ; θ)

∣∣∣s0] . (8)

For a given t, the action at given state st is independent of the reward values r0, . . . , rt−1. This
implies that, for τ < t,

Eθ
[
rτ

∂

∂θj
log π(at|st; θ)

∣∣∣s0] =

∫ (
rτ

∂

∂θj
log π(at|st; θ)

)
pθ(rτ , st, at|s0) drτ dst dat,

=

∫ (
rτ

∂

∂θj
log π(at|st; θ)

)
pθ(rτ |s0)pθ(st|rτ , s0)π(at|st; θ) drτ dst dat,

=

∫
rτpθ(rτ |s0)pθ(st|rτ , s0)

(∫
π(at|st; θ)

∂

∂θj
log π(at|st; θ) dat

)
︸ ︷︷ ︸

= ∂
∂θj

∫
π(at|st;θ)dat= ∂

∂θj
·1=0

drτ dst = 0.

Hence, interestingly, we can write

Eθ
[
G0

∂

∂θj
log π(at|st; θ)

∣∣∣s0] = Eθ
[(
r0 + γr1 + γ2r2 + . . . .+ γT rT

) ∂

∂θj
log π(at|st; θ)

∣∣∣s0]
= Eθ

[(
γtrt + γt+1rt+1 + . . . .+ γT rT

) ∂

∂θj
log π(at|st; θ)

∣∣∣s0]
= Eθ

[
γtGt

∂

∂θj
log π(at|st; θ)

∣∣∣s0] .
Therefore, Equation 8 can be simplified further as

∂Eθ[G0|s0]
∂θj

= Eθ

[
T−1∑
τ=0

γτGτ
∂

∂θj
log π(aτ |sτ ; θ)

∣∣∣s0] .
To do the batch update, we run M episodes. We use sit and ait to denote the state and the
selected action at time t in episode i and use Git to denote the discounted return collected from
time t onwards in episode i. Therefore, we have

∆θj =
1

M

M∑
i=1

Ti−1∑
t=0

γtGit
∂

∂θj
log π(ait|sit; θ)

b. Transforming the batch algorithm into an online algorithm can be done by simply removing the
averaging over M , i.e.

∆θj =
T−1∑
t=0

γtGt
∂

∂θj
log π(at|st; θ).

For the given episode, we have

∆θj = γ0G0
∂

∂θj
log π(a0|s0; θ) + γ1G1

∂

∂θj
log π(a1|s1; θ)

+ γ2G2
∂

∂θj
log π(a2|s2; θ) + γ3G3

∂

∂θj
log π(a3|s3; θ) + γ4G4

∂

∂θj
log π(a4|s4; θ).

Evaluating Gt = rt + γrt+1 + γ2rt+2 . . . gives the result above.



c. Optimizing for the returns starting from an arbitrary step m on the trajectory gives us

∆θmj =
T−1∑
t=m

γt−mGt
∂

∂θj
log π(at|st; θ).

d. Summing over all possible values of m gives us

∆θj =
T−1∑

m=−∞
∆θmj =

T−1∑
m=−∞

T−1∑
t=m

γt−mGt
∂

∂θj
log π(at|st; θ)

=

T−1∑
t=−∞

t∑
m=−∞

γt−mGt
∂

∂θj
log π(at|st; θ)

which can then be simplified further

∆θj =
T−1∑
t=−∞

∞∑
m=0

γmGt
∂

∂θj
log π(at|st; θ)

=
1

1− γ

T−1∑
t=−∞

Gt
∂

∂θj
log π(at|st; θ).

We can now replace Gt by
∑T

τ=t γ
τ−trτ and write

∆θj =
1

1− γ

T−1∑
t=−∞

T∑
τ=t

γτ−trτ
∂

∂θj
log π(at|st; θ)

=
1

1− γ

T∑
τ=−∞

rτ

τ∑
t=−∞

γτ−t
∂

∂θj
log π(at|st; θ),

where we assumed a dummy action aT with ∂
∂θj

log π(aT |sT ; θ) = 0. The expression above can

be re-written as, with a change of variable n = τ − t,

∆θj =
1

1− γ

T∑
τ=−∞

rτ

( ∞∑
n=0

γn
∂

∂θj
log π(aτ−n|sτ−n; θ)

)
, (9)

which is identical to the expression in the exercise with c = 1
1−γ .

e. We can expand the shadow variables as

ztj = λzt−1j +
∂

∂θj
log π(at|st; θ)

= λ2zt−2j + λ
∂

∂θj
log π(at−1|st−1; θ) +

∂

∂θj
log π(at|st; θ)

=

∞∑
n=0

λn
∂

∂θj
log π(at−n|st−n; θ).

With γ = λ, we note that this is equivalent to the last sum in Equation 9. In this case, we can
express the policy gradient update using our shadow variables as

∆θj =
1

1− γ

T∑
t=−∞

rtz
t
j (10)



f. In this case, Equation 10 simplifies to

∆θj =
1

1− γ
r4z

4
j =

1

1− γ
r4

4∑
n=0

γn
∂

∂θj
log π(a4−n|s4−n; θ) =

γ2

1− γ
r4

∂

∂θj
log π(a2|s2; θ).

Since it is assumed that ∂
∂θj

log π(a2|s2; θ) > 0, an increase in the value of the parameter θj will

increase the probability of taking a2 in s2 again. In addition, since r4 > 0, all terms are positive
and the value of θj will increase.

The magnitude of increase depends on the magnitude of r4. In other words, θj will increase
more if it contributed to a larger reward, due to its effect on the policy 2 steps before receiving
the reward.

The magnitude of increase also depends on γ2

1−γ . If the discount factor γ is small, it suggests
that earlier actions contribute little to later rewards; as a result, the gradient will also be small
since it relates to the policy several steps before actually receiving the reward.

Exercise 3. Recap and prepration for the next week: Why target networks help

States s(j) are represented by three-dimensional vectors (s
(j)
1 , s

(j)
2 , s

(j)
3 ). Actions are labeled by a 1-

dimensional index a = {1, 2}. We look at semi-gradient Q-learning with linear function approximation,

i.e. Q(s(j), a) =
∑3

i=1wais
(j)
i . We start with wai = 0 for all a and i.

Assume we observe state s(1) = (1, 1, 0), take action a = 1, receive reward r = 1 and observe the next
state s(2) = (0, 1, 1).

a. ComputeQ(s(1), 1) with the semi-gradient learning rule ∆wai = η(r+γmaxa′ Q(s′, a′)−Q(s(1), a))s
(1)
i

with γ = 1 and η = 0.1.

b. Show that Q(s(2), 1) has also changed.

c. Assume Q̂(s, a) =
∑

iwaisi + ε, where ε is a Gaussian noise term with mean 0 and variance σ2.

Show that 〈maxa Q̂(s, a)〉 > maxa〈Q̂(s, a)〉.
Hint: Evaluations are for fixed state s. Expectations run over the Gaussian variable ε. The noise
term ε is drawn independently for each action. Exploit that the mean of the Gaussian vanishes
and that expectations can be easily evaluated for linear operators.

Solution:

a. ∆w11 = 0.1·(1+1 maxa′ 0−0)·1 = 0.1, similarly ∆w12 = 0.1, ∆w13 = 1·(1+1 maxa′ 0−0)·0 = 0.

With these updates we get Q(s(1), 1) =
∑

iw1is
(1)
i = 0.2

b. Q(s(2), 1) was 0 before the update and is now Q(s(2), 1) =
∑

iw1is
(2)
i = 0.1.

c. Let’s call the maximal expected Q-value Q(s, a∗) = maxa〈Q̂(s, a)〉. If the noise terms where al-
ways such that arg maxa Q̂(s, a) = a∗, 〈maxa Q̂(s, a)〉 would be equal toQ(s, a∗) = maxa〈Q̂(s, a)〉.
However, for all cases where arg max Q̂(s, a) = â 6= a∗ we have Q̂(s, â) > Q̂(s, a∗) and averaging
both sides, we conclude: 〈maxa Q̂(s, a)〉 > Q(s, a∗).


