
Artificial Neural Networks (Gerstner). Exercises for week 6

From Policy Gradient to Actor-Critic

Exercise 1. Computer exercises: Environment 2 (part 2)1

Complete the computer exercise for environment 2.

Exercise 2. From Policy Gradient to eligibility traces

In this exercise you will show that eligibility traces appear naturally in any policy gradient algorithm.
Eligibility traces are nice because they lead to a transparent and easy–to–interpret algorithm. More-
over, eligibility traces enable a direct online implementation of the algorithm in distributed hardware
(or biology).

Consider a discrete multistep reinforcement learning problem with the usual graph, the usual notations
and transitions: an action at leads you (stochastically) from state st to st+1 and on this transition you
collect the reward rt. Suppose that you always start in state st=0 = sstart. We assume that there is a
simple terminal state starget. You get a particularly strong positive reward when you reach starget.

Your policy π(at|st; θ) depends on parameters θ. For the moment your aim is to optimize the param-
eters of the policy such that you maximize the expected discounted reward

Eθ[Return(sstart → starget)] = Eθ[r0 + γr1 + γ2r2 + ...].

We proceed in five steps.

a. Derive a batch version of the policy gradient algorithm over multiple time steps by optimizing
Eθ[Return(sstart → starget)] through gradient descent.

Hint : Use the log-likelihood trick and take the derivative with respect to parameter θj .

b. A batch algorithm means averaging over many episodes. Transform the batch algorithm into
an online algorithm where you consider one episode at a time. Assume that in one episode you
traverse the state-action sequence: s0, a0, r0; s1, a1, r1; s2, a2, r2; s3, a3, r3; s4, a4, r4; s5 = starget.

Show that the parameter updates can be written as

∆θj = [r0 + γr1 + γ2r2 + γ3r3 + γ4r4]
∂

∂θj
log[π(a0|s0; θ)]

+ [γr1 + γ2r2 + γ3r3 + γ4r4]
∂

∂θj
log[π(a1|s1; θ)]

+ [γ2r2 + γ3r3 + γ4r4]
∂

∂θj
log[π(a2|s2; θ)]

+ [γ3r3 + γ4r4]
∂

∂θj
log[π(a3|s3; θ)]

+ γ4r4
∂

∂θj
log[π(a4|s4; θ)] (1)

c. So far we were only interested in maximizing the discounted future reward from the INITIAL
state, with the discount factor computed relative to that state (t = 0). However, while you move
along the trajectory you pass by other states s1, s2, s3, s4. For each of these states st, you should
now also optimize the future expected discounted reward starting from st; that is you want to
maximize

Eθ[Return(st → starget)] = Eθ[rt + γrt+1 + γ2rt+2 + ...].

1Start this exercise in the first exercise session of week 6.



More generally, you should optimize the future discounted returns from every step t, assuming
that the discounting started at the current step or at any possible step m in the past (i.e. m ≤ t).
Assume that m runs from −∞ to t.

Redo the calculation in (b), but calculate the parameter update resulting from returns starting
in arbitrary states.

Hint : Copy, but time-shift the results from (b).

d. Sum all the updates from (b) and (c) and reorder all terms such that updates that are multiplied
with the same reward are grouped together.

Show that this results in updates of the form

∆θj = (2)

c
∑
t

rt

[
∂

∂θj
log[π(at|st; θ)] + γ

∂

∂θj
log[π(at−1|st−1; θ)] + γ2

∂

∂θj
log[π(at−2|st−2; θ)] + ...

]
(3)

with some constant c. What is this constant?

e. Now we introduce eligibility traces by defining for each parameter θj a ‘shadow variable’ zj
which, in each time step t, decreases by a factor λ < 1

zj ←− λzj (4)

and then (in the same time step) increase by an amount

zj ←−
∂

∂θj
log[π(at|st; θ)] (5)

where at is the action taken in time step t.

What is the relation of λ and γ? What is the final weight update?

f. Suppose that all rewards are zero, except the reward in the final time step r4 > 0. Furthermore
suppose that parameter θ is only sensitive to a2, s2. To be specific, say ∂

∂θj
log[π(a2|s2; θ)] > 0

and ∂
∂θj

log[π(at|st; θ)] = 0 for t 6= 2.

How can you interpret the resulting algorithm? How much will the parameter θj change?

Exercise 3. Recap and prepration for the next week: Why target networks help

States s(j) are represented by three-dimensional vectors (s
(j)
1 , s

(j)
2 , s

(j)
3 ). Actions are labeled by a 1-

dimensional index a = {1, 2}. We look at semi-gradient Q-learning with linear function approximation,

i.e. Q(s(j), a) =
∑3

i=1wais
(j)
i . We start with wai = 0 for all a and i.

Assume we observe state s(1) = (1, 1, 0), take action a = 1, receive reward r = 1 and observe the next
state s(2) = (0, 1, 1).

a. ComputeQ(s(1), 1) with the semi-gradient learning rule ∆wai = η(r+γmaxa′ Q(s′, a′)−Q(s(1), a))s
(1)
i

with γ = 1 and η = 0.1.

b. Show that Q(s(2), 1) has also changed.

c. Assume Q̂(s, a) =
∑

iwaisi + ε, where ε is a Gaussian noise term with mean 0 and variance σ2.

Show that 〈maxa Q̂(s, a)〉 > maxa〈Q̂(s, a)〉.
Hint: Evaluations are for fixed state s. Expectations run over the Gaussian variable ε. The noise
term ε is drawn independently for each action. Exploit that the mean of the Gaussian vanishes
and that expectations can be easily evaluated for linear operators.


