
1

Evolutionary Robotics
Prof. Dario Floreano

Evolutionary Robotics Laboratory

Exercise Sheet 3: Chase a goal on flat ground

Euan Judd (euan.judd@epfl.ch)
Luca Zunino (luca.zunino@epfl.ch)

Goal.

Use RoboGen to evolve robots able to solve more complex tasks. The evolved robot must follow a signal,

in this case a moving light, in the environment.

Learning objectives.

In this laboratory, you should learn:

• How to co-evolve controllers and morphologies for more complex tasks that include sensor

readings.

• How to use penalization in fitness functions.

• How to evolve robots capable of making the jump from simulation to reality, i.e. how to

avoid evolving robots that exploit some feature of the simulation and therefore don’t work

in the real world.

Assignments.

• Every team will submit the best robot (text file) found with evolution on Moodle by the 4th of May

23:59. NOTE: The performance of the robot will not be graded.

Getting Started

To get started, visit http://robogen.org/app and upload the files provided in Moodle into
Robogen2022/es3.

Tip if the software is having problems, try refreshing the page.

Important:

• Remember, all data is being saved to a virtual filesystem within your web browser. If you want to
save anything for later use, be sure to download it to your home directory!

• As mentioned previously, this year (including the Robogen Grand Challenge) you will not be
allowed to use wheels. The available parts are for this exercise sheet are the CoreComponent,
FixedBrick, ParametricJoint, PassiveHinge, ActiveHinge, LightSensor, and IrSensor (if you specify
addBodyPart=All when evolving morphologies, these will be the parts that your robots will be
composed of).

mailto:euan.judd@epfl.ch
mailto:luca.zunino@epfl.ch
http://robogen.org/app

2

Exercise 1

You will now perform a body-brain evolution of a robot that can both locomote and follow a light source.

First, if you try “Start a simulation” using es3/simConf.txt and es3/robot.txt. You will see an example of
an arena where a fixed light is placed. In simConf.txt observe the two parameters:

- lightSourcesConfigFile=lights.txt: used to add information on where the light is placed. See the
documentation on the Robogen website for more details.

- scenario=chasing: this fitness function will try to minimize the distance between the robot and
the light.

If the light is always in the same position during evolution, it is possible that the robot will just learn to
move along a specific path rather than use its light sensors to detect where the light source is and navigate
towards it (overfitting). To avoid overfitting, you should set up the evolution so that:

a. The robot begins from different starting positions by making a starPos.txt file (remember to add
startPositionConfigFile=startPos.txt to simConf.txt).

b. Alternatively, change the scenario in simConf.txt to scenario=chasing-rand-light.js. In this
scenario, the light moves in a different direction each time the simulator is started so only robots
that utilize their light sensors will be able to chase it.

We aren’t quite ready to evolve a robot yet though as it is actually very difficult to evolve a robot for two
different tasks simultaneously, e.g. the locomotion and light following tasks in this example. We therefore
suggest that you perform a multi-step evolution. Multi-step evolution is usually performed when multiple
distinct behaviours should be evolved in a robot. As the name implies, multiple evolutionary runs are
performed in series, each step uses a different fitness function to evolve the robot for one of the desired
behaviours. At the end of each step, the best robot from an evolutionary step is given as a json file which
needs to be converted using json_converter.py to a txt file so it can be input as the starting point in the
next step of the evolution.

As an example, to perform two-step evolution:

1. Step 1: evolve the body and brain of a robot able to locomote and turn.
2. Step 2: now we have a robot body and brain from the Step 1 in GenerationBest-X.json that can

locomote. Before starting Step 2:
a. Convert GenerationBest-X.json to GenerationBest-X.txt using json_converter.py.
b. Set referenceRobotFile=GenerationBest-X.txt and useBrainSeed=True (see

http://robogen.org/docs/evolution-configuration) in evolConf.txt to seed the Step 2
population with the body and brain from Step 1.

c. Set addBodyPart=LightSensor in evolConf.txt to limit the body evolution to adding light

sensors only in Step 2.

Now evolve a robot able to follow a light thanks to the usage of light sensors in the body and the

relative adjustment of the NN controller.

You may see the fitness plateau after a certain number of generations. If this happens, try the following:

• Keep the evolution running for more generations. Big improvements can sometimes happen
after 50-100 generations, even after the fitness seems to have plateaued already.

http://robogen.org/docs/evolution-configuration/#Simulator_settings
http://robogen.org/docs/evolution-configuration

3

• Explore the fitness landscape more, i.e. increase the population size, mutation rate, crossover
rate, or make the tournament size smaller.

• Improve the fitness function. For instance, modify the equation by changing some of the terms
or give weights to different terms in the existing fitness function to change their relative
importance.

Exercise 2

Real sensor data usually includes some noise. In addition, physical phenomena that are not modelled in
the simulator may influence the real system, e.g. reflections, different lights in the environment, or
inaccurate sensors. Therefore, to make the evolved robot generalizable when transferring the model from
simulation to reality, noise should be added to sensor readings in the simulator. Try to add noise of 0.1 to
the sensors and check if the performance is still good. If not, try an additional step of the multi-step
evolution where you perform a brain only evolution in the presence of sensor noise.

NOTE: See the documentation to add sensor noise.

Exercise 3 (optional)

If your robot can follow the light when the terrain is flat, you could try to evolve a new one using an arena
with a movable light and a more challenging terrain of your choosing.

Exercise 4

Submit the final robot that you evolved to locomote and follow a light source in presence of sensors noise.
It should be submitted as a txt file so use json_converter.py to convert the json file to txt. If you haven’t
already, use plot_results.py to analyse your evolution.

Good luck with your evolution!

http://robogen.org/docs/evolution-configuration/#Simulator_settings

