Problem 1

1) For every $i \in[K], \underline{d}_{i}$ is the $i^{\text {th }}$ canonical basis vector of \mathbb{R}^{K} and we define the latent random vector $\underline{h} \in\left\{\underline{d}_{i}: i \in[K]\right\}$ whose distribution is $\forall i \in[K]: \mathbb{P}\left(\underline{h}=\underline{d}_{i}\right)=w_{i}$. Finally, let $\underline{x}=\sum_{i=1}^{K} h_{i} \underline{a}_{i}+\underline{z}$ where $\underline{z} \sim \mathcal{N}\left(0, \sigma^{2} I_{D \times D}\right)$ is independent of \underline{h}. The random vector \underline{x} has a probability density function $p(\cdot)$. We have:

$$
\begin{aligned}
\mathbb{E}[\underline{x}] & =\sum_{i=1}^{K} \mathbb{E}\left[h_{i}\right] \underline{a}_{i}+\mathbb{E}[\underline{z}]=\sum_{i=1}^{K} w_{i} \underline{a}_{i} ; \\
\mathbb{E}\left[\underline{x x}^{T}\right] & =\mathbb{E}\left[\underline{z}^{T}\right]+\sum_{i=1}^{K} \mathbb{E}\left[h_{i}\right] \underbrace{\mathbb{E}[\underline{z}]}_{=0} \underline{a}_{i}^{T}+\mathbb{E}\left[h_{i}\right] \underline{a}_{i} \mathbb{E}[\underline{z}]^{T}+\sum_{i, j=1}^{K} \underbrace{\mathbb{E}\left[h_{i} h_{j}\right]}_{=w_{i} \delta_{i j}} \underline{a}_{i} \underline{a}_{j}^{T} \\
& =\sigma^{2} I_{D \times D}+\sum_{i=1}^{K} w_{i} \underline{a}_{i} \underline{a}_{i}^{T} .
\end{aligned}
$$

Finally, to compute the third moment tensor, note that $\mathbb{E}[\underline{z} \otimes \underline{z} \otimes \underline{z}]=0$ and that for every $(i, j) \in[K]^{2}: \mathbb{E}\left[\underline{a}_{i} \otimes \underline{a}_{j} \otimes \underline{z}\right]=\mathbb{E}\left[\underline{a}_{i} \otimes \underline{z} \otimes \underline{a}_{j}\right]=\mathbb{E}\left[\underline{z} \otimes \underline{a}_{i} \otimes \underline{a}_{j}\right]=0$. Hence:

$$
\begin{aligned}
\mathbb{E}[\underline{x} \otimes \underline{x} \otimes \underline{x}]= & \sum_{i, j, k=1}^{K} \underbrace{\mathbb{E}\left[h_{i} h_{j} h_{k}\right]}_{=w_{i} \delta_{i j} \delta_{i k}} \underline{a}_{i} \otimes \underline{a}_{j} \otimes \underline{a}_{k} \\
& +\sum_{i=1}^{K} \mathbb{E}\left[h_{i}\right] \mathbb{E}\left[\underline{a}_{i} \otimes \underline{z} \otimes \underline{z}\right]+\mathbb{E}\left[h_{i}\right] \mathbb{E}\left[\underline{z} \otimes \underline{a}_{i} \otimes \underline{z}\right]+\mathbb{E}\left[h_{i}\right] \mathbb{E}\left[\underline{z} \otimes \underline{z} \otimes \underline{a}_{i}\right] \\
= & \sum_{i=1}^{K} w_{i} \underline{a}_{i} \otimes \underline{a}_{i} \otimes \underline{a}_{i}+\sigma^{2} \sum_{j=1}^{D} \sum_{i=1}^{K} w_{i}\left(\underline{a}_{i} \otimes \underline{e}_{j} \otimes \underline{e}_{j}+\underline{e}_{j} \otimes \underline{e}_{j} \otimes \underline{a}_{i}+\underline{e}_{j} \otimes \underline{a}_{i} \otimes \underline{e}_{j}\right) .
\end{aligned}
$$

2) Let $A=\left[\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{K}\right] \in \mathbb{R}^{D \times K}$ and $A^{\prime}=\left[\underline{a}_{1}^{\prime}, \underline{a}_{2}^{\prime}, \ldots, \underline{a}_{K}^{\prime}\right] \in \mathbb{R}^{D \times K}$. By definition, $\widetilde{R}=\Sigma^{-1} R \Sigma$ where Σ is the diagonal matrix such that $\Sigma_{i i}=\sqrt{w_{i}}$ and $A^{\prime}=A \widetilde{R}$. We can directly apply the formula of question 1) to compute the second moment matrix of the new mixture of Gaussians:

$$
\begin{aligned}
& \mathbb{E}\left[\underline{x x}^{T}\right]=\sigma^{2} I_{D \times D}+A^{\prime} \Sigma^{2} A^{\prime T}=\sigma^{2} I_{D \times D}+A \widetilde{R}^{T} \Sigma^{2} \widetilde{R} A^{T} \\
&=\sigma^{2} I_{D \times D}+A \Sigma R^{T} R \Sigma A^{T}=\sigma^{2} I_{D \times D}+A \Sigma^{2} A^{T} .
\end{aligned}
$$

Problem 2: Examples of tensors and their rank

1) The matrices corresponding to B, P, E are:

$$
B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; P=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] ; E=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

The frontal slices of G and W are:

$$
G_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], G_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] ; W_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], W_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

2) B and E are clearly rank-2 matrices, while $P=\left(e_{0}+e_{1}\right) \otimes\left(e_{0}+e_{1}\right)$ is a rank- 1 matrix.

By its definition, G is at most rank 2. Assume it is rank 1: $G=a \otimes b \otimes c$ with $a, b, c \in \mathbb{R}^{2}$. We have $a_{1} b_{1} c_{1}=G_{111}=1$ and $a_{2} b_{1} c_{1}=G_{211}=0$ so we must have $a_{2}=0$. Besides, $a_{2} b_{2} c_{2}=G_{222}=1$ and $a_{1} b_{2} c_{2}=G_{122}=0$ so $a_{1}=0$. Hence $a^{T}=(0,0)$ and G is the all-zero tensor. This is a contradiction and we conclude that G is rank 2 .
By its definition, W is at most rank 3. To prove the rank cannot be smaller than 3 , we will proceed by contradiction:

- Assume W is rank 1: $W=a \otimes b \otimes c$ with $a, b, c \in \mathbb{R}^{2}$. We have $a_{1} b_{1} c_{1}=W_{111}=0$ and $a_{2} b_{1} c_{1}=W_{211}=1$ so $a_{1}=0$. Besides, $a_{1} b_{1} c_{2}=W_{112}=1$ and $a_{2} b_{1} c_{2}=W_{212}=0$ so $a_{2}=0$. Then $a=(0,0)^{T}$ and W is the all-zero tensor, which is a contradiction.
- Assume W is rank 2: $W=a \otimes b \otimes c+d \otimes e \otimes f$. We claim that a and d must be linearly independent. Indeed, suppose they are parallel and take a vector x perpendicular to both a and d. Then

$$
W(x, I, I)=\left(x^{T} a\right) b \otimes c+\left(x^{T} d\right) e \otimes f=0
$$

but also

$$
W(x, I, I)=\left(x^{T} e_{0}\right) e_{0} \otimes e_{1}+\left(x^{T} e_{0}\right) e_{1} \otimes e_{0}+\left(x^{T} e_{1}\right) e_{0} \otimes e_{0}=\left[\begin{array}{cc}
x^{T} e_{1} & x^{T} e_{0} \\
x^{T} e_{0} & 0
\end{array}\right]
$$

which cannot be zero since x cannot be perpendicular to both e_{0} and e_{1}. Now, we take x perpendicular to d. We have

$$
W(x, I, I)=\left(x^{T} a\right) b \otimes c
$$

which is rank one. Therefore, we must have $x^{T} e_{0}=0$ which implies that x is parallel to e_{1} and thus d parallel to e_{0}. Now, if we take x perpendicular to a, the matrix

$$
W(x, I, I)=\left(x^{T} d\right) e \otimes f
$$

is rank one and, once again, we must have $x^{T} e_{0}=0$, which implies x parallel to e_{1} and thus a parallel to e_{0}. Hence, we have shown that a and d are linearly independent but also that both are parallel to e_{0}. This is a contradiction.
3) We expand the tensor products in the definition of D_{ϵ} :

$$
\begin{aligned}
D_{\epsilon}= & \frac{1}{\epsilon}\left[\left(e_{0}+\epsilon e_{1}\right) \otimes\left(e_{0}+\epsilon e_{1}\right) \otimes\left(e_{0}+\epsilon e_{1}\right)-e_{0} \otimes e_{0} \otimes e_{0}\right] \\
= & \frac{1}{\epsilon}\left[e_{0} \otimes e_{0} \otimes e_{0}+\epsilon e_{0} \otimes e_{0} \otimes e_{1}+\epsilon e_{0} \otimes e_{1} \otimes e_{0}+\epsilon e_{1} \otimes e_{0} \otimes e_{0}\right. \\
& \left.+\epsilon^{2} e_{1} \otimes e_{1} \otimes e_{0}+\epsilon^{2} e_{1} \otimes e_{0} \otimes e_{1}+\epsilon^{2} e_{0} \otimes e_{1} \otimes e_{1}+\epsilon^{3} e_{1} \otimes e_{1} \otimes e_{1}-e_{0} \otimes e_{0} \otimes e_{0}\right] \\
= & e_{0} \otimes e_{0} \otimes e_{1}+e_{0} \otimes e_{1} \otimes e_{0}+e_{1} \otimes e_{0} \otimes e_{0} \\
& \quad+\epsilon\left(e_{1} \otimes e_{1} \otimes e_{0}+e_{1} \otimes e_{0} \otimes e_{1}+e_{0} \otimes e_{1} \otimes e_{1}\right)+\epsilon^{2} e_{1} \otimes e_{1} \otimes e_{1} \\
= & W+\epsilon\left(e_{1} \otimes e_{1} \otimes e_{0}+e_{1} \otimes e_{0} \otimes e_{1}+e_{0} \otimes e_{1} \otimes e_{1}\right)+\epsilon^{2} e_{1} \otimes e_{1} \otimes e_{1} .
\end{aligned}
$$

Hence $\lim _{\epsilon \rightarrow 0} D_{\epsilon}=W$.

Problem 3

1) There cannot be an analogous general result for tensors. Indeed, the order- 3 tensor W of Problem 2 is rank 3 and we showed in 3) that $\lim _{\epsilon \rightarrow 0}\left\|W-D_{\epsilon}\right\|_{F}=0$. So there is no minimum attained in the space of rank 2 tensors. In this sense, there is simply no best rank-two approximation of W.
2) Let M a matrix of rank $R+1$ with singular values $\sigma_{1} \geq \sigma_{2} \cdots \geq \sigma_{R} \geq \sigma_{R+1}>0$. By the Eckart-Young-Mirsky theorem, the minimum of $\|M-\widehat{M}\|_{F}$ over all the matrices \widehat{M} of rank less than, or equal to, R is $\sigma_{R+1}>0$. Therefore, there cannot be a sequence of matrices M_{n} given by a sum of R rank-one matrices such that $\lim _{n \rightarrow+\infty}\left\|M-M_{n}\right\|_{F}=0$.

Now let $M \in \mathbb{C}^{M \times N}$ be a matrix of rank $R-1$ with $R \leq \min \{M, N\}$. Let $M=U \Sigma V^{*}$ be the SVD of M where $\sigma_{1} \geq \cdots \geq \sigma_{R-1}>0$ are its singular values. For all positive integer n, we define $\sigma_{R}^{(n)}:=\sigma_{R-1} / n$ as well as the rank- R matrix $M_{n}=U \Sigma_{n} V^{*}$ where Σ_{n} is a $M \times N$ diagonal matrix whose nonzero diagonal entries are $\sigma_{1} \geq \cdots \geq \sigma_{R-1} \geq \sigma_{R}^{(n)}$. Clearly $\lim _{n \rightarrow+\infty}\left\|M-M_{n}\right\|_{F}=\lim _{n \rightarrow+\infty} \frac{\sigma_{R-1}}{n}=0$. A similar procedure can be applied if M is a tensor.
3) In the real-valued case, we have:

$$
\left|T\left(R_{1}, R_{2}, R_{3}\right)^{\alpha \beta \gamma}\right|^{2}=\sum_{\delta, \epsilon, \zeta, \delta^{\prime}, \epsilon^{\prime}, \delta^{\prime}} R_{1}^{\delta \alpha} R_{1}^{\delta^{\prime} \alpha} R_{2}^{\epsilon \beta} R_{2}^{\epsilon^{\prime} \beta} R_{3}^{\zeta \gamma} R_{3}^{\zeta^{\prime} \gamma} T^{\delta \epsilon \zeta} T^{\delta^{\prime} \epsilon^{\prime} \zeta^{\prime}}
$$

Summing over α, β, γ and using the orthogonality of rotation matrices, we find:

$$
\sum_{\alpha} R_{1}^{\delta \alpha} R_{1}^{\delta^{\prime} \alpha}=\delta_{\delta \delta^{\prime}}, \quad \sum_{\beta} R_{2}^{\epsilon \beta} R_{2}^{\epsilon^{\prime} \beta}=\delta_{\epsilon \epsilon^{\prime}}, \quad \sum_{\gamma} R_{3}^{\zeta \gamma} R_{3}^{\zeta^{\prime} \gamma}=\delta_{\zeta \zeta^{\prime}}
$$

The result directly follows:

$$
\begin{aligned}
\left\|T\left(R_{1}, R_{2}, R_{3}\right)\right\|_{F}^{2} & =\sum_{\alpha, \beta, \gamma}\left|T\left(R_{1}, R_{2}, R_{3}\right)^{\alpha \beta \gamma}\right|^{2} \\
& =\sum_{\delta, \epsilon, \zeta, \delta^{\prime}, \epsilon^{\prime}, \delta^{\prime}} \delta_{\delta \delta^{\prime}} \delta_{\epsilon \epsilon^{\prime}} \delta_{\zeta \zeta^{\prime}} T^{\delta \epsilon \zeta} T^{\delta^{\prime} \epsilon^{\prime} \zeta^{\prime}} \\
& =\sum_{\delta \epsilon \zeta}\left|T^{\delta \epsilon \zeta}\right|^{2} \\
& =\|T\|_{F}^{2}
\end{aligned}
$$

