
Solutions to Homework 7: 25 April 2023
CS-526 Learning Theory

Problem 1

1) For every i ∈ [K], di is the ith canonical basis vector of RK and we define the latent random vector
h ∈ {di : i ∈ [K]} whose distribution is ∀i ∈ [K] : P(h = di) = wi. Finally, let x =

∑K
i=1 hiai + z

where z ∼ N (0, σ2ID×D) is independent of h. The random vector x has a probability density
function p(·). We have:

E[x] =
K∑
i=1

E[hi]ai + E[z] =
K∑
i=1

wi ai ;

E[xxT ] = E[zzT ] +

K∑
i=1

E[hi] E[z]︸︷︷︸
=0

aTi + E[hi]aiE[z]T +

K∑
i,j=1

E[hihj ]︸ ︷︷ ︸
=wiδij

aia
T
j

= σ2ID×D +
K∑
i=1

wi aia
T
i .

Finally, to compute the third moment tensor, note that E[z ⊗ z ⊗ z] = 0 and that for every
(i, j) ∈ [K]2: E[ai ⊗ aj ⊗ z] = E[ai ⊗ z ⊗ aj ] = E[z ⊗ ai ⊗ aj ] = 0. Hence:

E[x⊗ x⊗ x] =
K∑

i,j,k=1

E[hihjhk]︸ ︷︷ ︸
=wiδijδik

ai ⊗ aj ⊗ ak

+

K∑
i=1

E[hi]E[ai ⊗ z ⊗ z] + E[hi]E[z ⊗ ai ⊗ z] + E[hi]E[z ⊗ z ⊗ ai]

=
K∑
i=1

wi ai ⊗ ai ⊗ ai + σ2
D∑
j=1

K∑
i=1

wi(ai ⊗ ej ⊗ ej + ej ⊗ ej ⊗ ai + ej ⊗ ai ⊗ ej) .

2) Let A = [a1, a2, . . . , aK ] ∈ RD×K and A′ = [a′1, a
′
2, . . . , a

′
K ] ∈ RD×K . By definition, R̃ = Σ−1RΣ

where Σ is the diagonal matrix such that Σii =
√
wi and A′ = AR̃T . We can directly apply the

formula of question 1) to compute the second moment matrix of the new mixture of Gaussians:

E[xxT ] = σ2ID×D +A′Σ2A′T = σ2ID×D +AR̃TΣ2R̃AT

= σ2ID×D +AΣRTRΣAT = σ2ID×D +AΣ2AT .

Problem 2: Examples of tensors and their rank

1) The matrices corresponding to B, P , E are:

B =

[
1 0
0 1

]
; P =

[
1 1
1 1

]
; E =

[
1 1
0 1

]
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The frontal slices of G and W are:

G1 =

[
1 0
0 0

]
, G2 =

[
0 0
0 1

]
; W1 =

[
0 1
1 0

]
, W2 =

[
1 0
0 0

]
.

2) B and E are clearly rank-2 matrices, while P = (e0 + e1)⊗ (e0 + e1) is a rank-1 matrix.
By its definition, G is at most rank 2. Assume it is rank 1: G = a⊗ b⊗ c with a, b, c ∈ R2. We have
a1b1c1 = G111 = 1 and a2b1c1 = G211 = 0 so we must have a2 = 0. Besides, a2b2c2 = G222 = 1 and
a1b2c2 = G122 = 0 so a1 = 0. Hence aT = (0, 0) and G is the all-zero tensor. This is a contradiction
and we conclude that G is rank 2.
By its definition, W is at most rank 3. To prove the rank cannot be smaller than 3, we will proceed
by contradiction:

• Assume W is rank 1: W = a ⊗ b ⊗ c with a, b, c ∈ R2. We have a1b1c1 = W111 = 0 and
a2b1c1 = W211 = 1 so a1 = 0. Besides, a1b1c2 = W112 = 1 and a2b1c2 = W212 = 0 so a2 = 0.
Then a = (0, 0)T and W is the all-zero tensor, which is a contradiction.

• Assume W is rank 2: W = a ⊗ b ⊗ c + d ⊗ e ⊗ f . We claim that a and d must be linearly
independent. Indeed, suppose they are parallel and take a vector x perpendicular to both a
and d. Then

W (x, I, I) = (xTa)b⊗ c+ (xTd)e⊗ f = 0

but also

W (x, I, I) = (xT e0)e0 ⊗ e1 + (xT e0)e1 ⊗ e0 + (xT e1)e0 ⊗ e0 =

[
xT e1 xT e0
xT e0 0

]
which cannot be zero since x cannot be perpendicular to both e0 and e1. Now, we take x
perpendicular to d. We have

W (x, I, I) = (xTa)b⊗ c

which is rank one. Therefore, we must have xT e0 = 0 which implies that x is parallel to e1
and thus d parallel to e0. Now, if we take x perpendicular to a, the matrix

W (x, I, I) = (xTd)e⊗ f

is rank one and, once again, we must have xT e0 = 0, which implies x parallel to e1 and thus
a parallel to e0. Hence, we have shown that a and d are linearly independent but also that
both are parallel to e0. This is a contradiction.

3) We expand the tensor products in the definition of Dε:

Dε =
1

ε

[
(e0 + εe1)⊗ (e0 + εe1)⊗ (e0 + εe1)− e0 ⊗ e0 ⊗ e0

]
=

1

ε

[
e0 ⊗ e0 ⊗ e0 + ε e0 ⊗ e0 ⊗ e1 + ε e0 ⊗ e1 ⊗ e0 + ε e1 ⊗ e0 ⊗ e0

+ ε2 e1 ⊗ e1 ⊗ e0 + ε2 e1 ⊗ e0 ⊗ e1 + ε2 e0 ⊗ e1 ⊗ e1 + ε3 e1 ⊗ e1 ⊗ e1 − e0 ⊗ e0 ⊗ e0
]

= e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0
+ ε(e1 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1) + ε2 e1 ⊗ e1 ⊗ e1

= W + ε(e1 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1) + ε2 e1 ⊗ e1 ⊗ e1 .

Hence limε→0Dε = W .
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Problem 3

1) There cannot be an analogous general result for tensors. Indeed, the order-3 tensor W of Prob-
lem 2 is rank 3 and we showed in 3) that limε→0 ‖W −Dε‖F = 0. So there is no minimum attained
in the space of rank 2 tensors. In this sense, there is simply no best rank-two approximation of W .

2) Let M a matrix of rank R + 1 with singular values σ1 ≥ σ2 · · · ≥ σR ≥ σR+1 > 0. By the

Eckart-Young-Mirsky theorem, the minimum of ‖M − M̂‖F over all the matrices M̂ of rank less
than, or equal to, R is σR+1 > 0. Therefore, there cannot be a sequence of matrices Mn given by
a sum of R rank-one matrices such that limn→+∞ ‖M −Mn‖F = 0.

Now let M ∈ CM×N be a matrix of rank R − 1 with R ≤ min{M,N}. Let M = UΣV ∗

be the SVD of M where σ1 ≥ · · · ≥ σR−1 > 0 are its singular values. For all positive inte-

ger n, we define σ
(n)
R := σR−1/n as well as the rank-R matrix Mn = UΣnV

∗ where Σn is a

M × N diagonal matrix whose nonzero diagonal entries are σ1 ≥ · · · ≥ σR−1 ≥ σ
(n)
R . Clearly

limn→+∞ ‖M −Mn‖F = limn→+∞
σR−1

n = 0. A similar procedure can be applied if M is a tensor.

3) In the real-valued case, we have:

|T (R1, R2, R3)
αβγ |2 =

∑
δ,ε,ζ,δ′,ε′,δ′

Rδα1 Rδ
′α

1 Rεβ2 R
ε′β
2 Rζγ3 R

ζ′γ
3 T δεζT δ

′ε′ζ′ .

Summing over α, β, γ and using the orthogonality of rotation matrices, we find:∑
α

Rδα1 Rδ
′α

1 = δδδ′ ,
∑
β

Rεβ2 R
ε′β
2 = δεε′ ,

∑
γ

Rζγ3 R
ζ′γ
3 = δζζ′ .

The result directly follows:

‖T (R1, R2, R3)‖2F =
∑
α,β,γ

|T (R1, R2, R3)
αβγ |2

=
∑

δ,ε,ζ,δ′,ε′,δ′

δδδ′δεε′δζζ′T
δεζT δ

′ε′ζ′

=
∑
δεζ

|T δεζ |2

= ‖T‖2F .
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