Artificial Neural Networks (Gerstner). Exercises for week 9

Markov Decision Processes

Exercise 1. Optimal policies for finite horizon.

Create a Markov Decision Process where the optimal horizon-T policy depends on the time step, i.e. there is at least one state s and one pair of timesteps t and t' such that $\pi^{(t)}(a|s) \neq \pi^{(t')}(a|s)$.

Hint: You can choose T = 2 for simplicity.

Exercise 2. Shortest path search.

Let $S = \{s_1, s_2, s_3, \ldots\}$ denote a set of vertices (think of cities on a map) and let the vertices be connected by some edges $e_{s_i,s_j} \in (0, \infty]$ (think of distances between cities), where $e_{s_i,s_j} = \infty$ indicates that there is no direct connection between s_i and s_j . Dijkstra's algorithm for finding the shortest paths to some goal vertex g can be written in the following way (we show the length of the shortest path from vertex s to g by V(s)):

- For each vertex $s \in S$, initialize all distances from g by $V(s) \leftarrow \infty$.
- Initialize the distance of g from itself by $V(g) \leftarrow 0$.
- Define and initialize $\tilde{\mathcal{S}} \leftarrow \mathcal{S}$.
- While \tilde{S} is not empty
 - $-s_i \leftarrow \arg\min_{s \in \tilde{S}} V(s)$
 - Remove s_i from \tilde{S}
 - For each neighbor s_j of s_i still in $\tilde{\mathcal{S}}$: $V(s_j) \leftarrow \min(V(s_j), V(s_i) + e_{s_i, s_j})$.
- Return V(s) for all $s \in \mathcal{S}$.

The output V(s) of Dijkstra's algorithm is equal to the lenght of the shortest path from s to g. In this exercise, we formulate the problem of finding the shortest path as a dynamic programming problem.

- a. What is the equivalent Markov Decision Process for the problem of finding the shortest paths to some goal state? Hint: Define the goal state as an absorbing state and describe the properties of r_s^a and $p_{s_i \to s_i}^a$.
- b. Compare the value iteration algorithm on the MDP of part a with Dijkstra's algorithm.

Exercise 3. Bellman operator.

Proof that the Bellman operator is a contraction.

Hint: Show the contraction with the infinity norm, i.e.

$$||T_{\gamma}[X] - T_{\gamma}[Y]||_{\infty} = \max_{s} |T_{\gamma}[X]_{s} - T_{\gamma}[Y]_{s}| \le \gamma ||X - Y||_{\infty},$$

where the last inequality is to be proven. You can use the notation $Q_{sa}^X = r_s^a + \gamma \sum_{s' \in \mathcal{S}} p_{s \to s'}^a X_{s'}$ and the facts that $|\max_a Q_{sa}^X - \max_{a'} Q_{sa'}^Y| \le \max_a |Q_{sa}^X - Q_{sa}^Y|$ and $\sum_{s' \in \mathcal{S}} p_{s \to s'}^a = 1$.

Exercise 4. Importance sampling.

Let us assume we would like to evaluate a policy $\pi(a|s)$, but we can only obtain episodes

 $(S_0, A_0, R_1, S_1, \ldots, S_{T-1}, A_{T-1}, R_T, S_T)$

with policy b(a|s). We will use importance weights C_t to correct for the mismatch between the two policies, i.e. we will compute

$$\tilde{V}_{\gamma}^{(T)}(b,s) := \mathbb{E}_b \left[\sum_{t=1}^T \gamma^{t-1} C_t R_t \Big| S_0 = s \right]$$

where the expectation is taken over actions sampled from policy b. How should the importance weights C_t be chosen to have $V_{\gamma}^{(T)}(\pi, s) = \tilde{V}_{\gamma}^{(T)}(b, s)$?

Hint: Importance weights are themselves random variable, i.e., they depends on (S_0, A_0, R_1, \ldots) .