Artificial Neural Networks (Gerstner). Solutions for week 9

Markov Decision Processes

Exercise 1. Optimal policies for finite horizon.

Create a Markov Decision Process where the optimal horizon- T policy depends on the time step, i.e. there is at least one state s and one pair of timesteps t and t^{\prime} such that $\pi^{(t)}(a \mid s) \neq \pi^{\left(t^{\prime}\right)}(a \mid s)$.
Hint: You can choose $T=2$ for simplicity.

Solution:

Consider the simple MDP in Figure 1, where we have three states s1, s2, and s3. There are 2 actions available at s1 and s2: Action a1 takes the agent from both states s1 and s2 to state s3, through which the agent recieves a deterministic reward of +2 . Action a2 takes the agent from state s1 to s2 and from s2 to s1, while the agent recieves a deterministic reward of +1 through both transitions. State s 3 is a terminal state with a dummy action a1 that keeps agents at state s3 (without any reward).

Figure 1: MDP of Exercise 1
For $T=2$, it is easy to see that the optimal policy is given by

$$
\begin{aligned}
& \pi^{(1)}(a \mid \mathrm{s} 1)=\delta_{a, \mathrm{a} 2} \quad \text { and } \quad \pi^{(1)}(a \mid \mathrm{s} 2)=\delta_{a, \mathrm{a} 2} \\
& \pi^{(2)}(a \mid \mathrm{s} 1)=\delta_{a, \mathrm{a} 1} \quad \text { and } \quad \pi^{(2)}(a \mid \mathrm{s} 2)=\delta_{a, \mathrm{a} 1}
\end{aligned}
$$

Exercise 2. Shortest path search.

Let $\mathcal{S}=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ denote a set of vertices (think of cities on a map) and let the vertices be connected by some edges $e_{s_{i}, s_{j}} \in(0, \infty]$ (think of distances between cities), where $e_{s_{i}, s_{j}}=\infty$ indicates that there is no direct connection between s_{i} and s_{j}. Dijkstra's algorithm for finding the shortest paths to some goal vertex g can be written in the following way (we show the lenght of the shortest path from vertex s to g by $V(s))$:

- For each vertex $s \in \mathcal{S}$, initialize all distances from g by $V(s) \leftarrow \infty$.
- Initialize the distance of g from itself by $V(g) \leftarrow 0$.
- Define and initialize $\tilde{\mathcal{S}} \leftarrow \mathcal{S}$.
- While $\tilde{\mathcal{S}}$ is not empty
$-s_{i} \leftarrow \arg \min _{s \in \tilde{\mathcal{S}}} V(s)$
- Remove s_{i} from $\tilde{\mathcal{S}}$
- For each neighbor s_{j} of s_{i} still in $\tilde{\mathcal{S}}: V\left(s_{j}\right) \leftarrow \min \left(V\left(s_{j}\right), V\left(s_{i}\right)+e_{s_{i}, s_{j}}\right)$.
- Return $V(s)$ for all $s \in \mathcal{S}$.

The output $V(s)$ of Dijkstra's algorithm is equal to the lenght of the shortest path from s to g. In this exercise, we formulate the problem of finding the shortest path as a dynamic programming problem.
a. What is the equivalent Markov Decision Process for the problem of finding the shortest paths to some goal state?
Hint: Define the goal state as an absorbing state and describe the properties of r_{s}^{a} and $p_{s_{i} \rightarrow s_{j}}^{a}$.
b. Compare the value iteration algorithm on the MDP of part a with Dijkstra's algorithm.

Solution:

a. We consider a deterministic MDP with the state space \mathcal{S} and the following properties:
(i) $\gamma=1$.
(ii) Available actions in each state $s \in \mathcal{S}$ are moving to one of the neighbouring states.
(iii) The reward corresponding to moving from $s \in \mathcal{S}$ to $s^{\prime} \in \mathcal{S}$ is equal to $-e_{s, s^{\prime}}$.
(iv) The goal vertix $g \in \mathcal{S}$ is the only terminal state.

Since all rewards are negative, the optimal policy in this MDP is to get to the terminal state $g \in \mathcal{S}$ with largest cumilative reward which is equivalent to shortest distance. Hence, the negative optimal value $-V^{*}(s)$ is equal to the shortest distance from vertix s to the source g.
b. Dijkstra's algorithm is similar to value iteration, but it has some fundamental differences:
(i) In Dijkstra's algorithm, the set of states whose values are updated in each iteration decreases by one after each iteration (s_{i} is removed from $\tilde{\mathcal{S}}$).
(ii) In Dijkstra's algorithm, the arg max over all possible next actions is removed and replaced by a comparison between the current value of the state $\left(V\left(s_{j}\right)\right)$ and the value of the action that takes the agent to s_{i} (i.e., $\left.V\left(s_{i}\right)+e_{s_{i}, s_{j}}\right)$.
(iii) Dijkstra's algorithm uses the fact that transitions are deterministic and replace the averaging over next state s^{\prime} in the value update directly by the value of the next state.

Exercise 3. Bellman operator.

Proof that the Bellman operator is a contraction.
Hint: Show the contraction with the infinity norm, i.e.

$$
\left\|T_{\gamma}[X]-T_{\gamma}[Y]\right\|_{\infty}=\max _{s}\left|T_{\gamma}[X]_{s}-T_{\gamma}[Y]_{s}\right| \leq \gamma\|X-Y\|_{\infty}
$$

where the last inequality is to be proven. You can use the notation $Q_{s a}^{X}=r_{s}^{a}+\gamma \sum_{s^{\prime} \in \mathcal{S}} p_{s \rightarrow s^{\prime}}^{a} X_{s^{\prime}}$ and the facts that $\left|\max _{a} Q_{s a}^{X}-\max _{a^{\prime}} Q_{s a^{\prime}}^{Y}\right| \leq \max _{a}\left|Q_{s a}^{X}-Q_{s a}^{Y}\right|$ and $\sum_{s^{\prime} \in \mathcal{S}} p_{s \rightarrow s^{\prime}}^{a}=1$.

Solution:

We start with replacing the Bellman operators in the hint by their explicit definitions

$$
\left\|T_{\gamma}[X]-T_{\gamma}[Y]\right\|_{\infty}=\max _{s}\left|T_{\gamma}[X]_{s}-T_{\gamma}[Y]_{s}\right|=\max _{s}\left|\max _{a} Q_{s a}^{X}-\max _{a^{\prime}} Q_{s a^{\prime}}^{Y}\right|
$$

We can now use the fact $\left|\max _{a} Q_{s a}^{X}-\max _{a^{\prime}} Q_{s a^{\prime}}^{Y}\right| \leq \max _{a}\left|Q_{s a}^{X}-Q_{s a}^{Y}\right|$ as well as the definition of $Q_{s a}^{X}$ and write

$$
\begin{aligned}
\left\|T_{\gamma}[X]-T_{\gamma}[Y]\right\|_{\infty} & \leq \max _{s} \max _{a}\left|Q_{s a}^{X}-Q_{s a}^{Y}\right| \\
& =\max _{s} \max _{a}\left|\left(r_{s}^{a}+\gamma \sum_{s^{\prime} \in \mathcal{S}} p_{s \rightarrow s^{\prime}}^{a} X_{s^{\prime}}\right)-\left(r_{s}^{a}+\gamma \sum_{s^{\prime} \in \mathcal{S}} p_{s \rightarrow s^{\prime}}^{a} Y_{s^{\prime}}\right)\right| \\
& =\max _{s} \max _{a}\left|\gamma \sum_{s^{\prime} \in \mathcal{S}} p_{s \rightarrow s^{\prime}}^{a}\left(X_{s^{\prime}}-Y_{s^{\prime}}\right)\right| \leq \gamma \max _{s} \max _{a} \sum_{s^{\prime} \in \mathcal{S}} p_{s \rightarrow s^{\prime}}^{a}\left|X_{s^{\prime}}-Y_{s^{\prime}}\right|
\end{aligned}
$$

where, for the last inequality, we used the fact that $\left|\sum_{s^{\prime}} Z_{s^{\prime}}\right| \leq \sum_{s^{\prime}}\left|Z_{s^{\prime}}\right|$ for any vector Z. In addition, we have

$$
\left|X_{s^{\prime}}-Y_{s^{\prime}}\right| \leq \max _{s^{\prime}}\left|X_{s^{\prime}}-Y_{s^{\prime}}\right|=\|X-Y\|_{\infty}
$$

Combining the last two inequalities, we have

$$
\begin{aligned}
\left\|T_{\gamma}[X]-T_{\gamma}[Y]\right\|_{\infty} & \leq \gamma \max _{s} \max _{a} \sum_{s^{\prime} \in \mathcal{S}} p_{s \rightarrow s^{\prime}}^{a}\|X-Y\|_{\infty} \\
& \leq \gamma\|X-Y\|_{\infty} \max _{s} \max _{a} \sum_{s^{\prime} \in \mathcal{S}} p_{s \rightarrow s^{\prime}}^{a},
\end{aligned}
$$

and, because $\sum_{s^{\prime} \in \mathcal{S}} p_{s \rightarrow s^{\prime}}^{a}=1$, we have

$$
\left\|T_{\gamma}[X]-T_{\gamma}[Y]\right\|_{\infty} \leq \gamma\|X-Y\|_{\infty}
$$

If $\gamma<1$, then the last inequality implies that the operator T_{γ} is a contraction mapping.

Exercise 4. Importance sampling.

Let us assume we would like to evaluate a policy $\pi(a \mid s)$, but we can only obtain episodes

$$
\left(S_{0}, A_{0}, R_{1}, S_{1}, \ldots, S_{T-1}, A_{T-1}, R_{T}, S_{T}\right)
$$

with policy $b(a \mid s)$. We will use importance weights C_{t} to correct for the mismatch between the two policies, i.e. we will compute

$$
\tilde{V}_{\gamma}^{(T)}(b, s):=\mathbb{E}_{b}\left[\sum_{t=1}^{T} \gamma^{t-1} C_{t} R_{t} \mid S_{0}=s\right]
$$

where the expectation is taken over actions sampled from policy b. How should the importance weights C_{t} be chosen to have $V_{\gamma}^{(T)}(\pi, s)=\tilde{V}_{\gamma}^{(T)}(b, s)$?
Hint: Importance weights are themselves random variable, i.e., they depends on ($S_{0}, A_{0}, R_{1}, \ldots$).

Solution:

The value $V_{\gamma}^{(T)}(\pi, s)$ is given by

$$
V_{\gamma}^{(T)}(\pi, s)=\mathbb{E}_{\pi}\left[\sum_{t=1}^{T} \gamma^{t-1} R_{t} \mid S_{0}=s\right]=\sum_{a_{0: T-1}, s_{1: T}, r_{1: T}} P_{\pi}\left(a_{0: T-1}, s_{1: T}, r_{1: T} \mid s_{0}\right) \sum_{t=1}^{T} \gamma^{t-1} r_{t}
$$

We can similarly expand $\tilde{V}_{\gamma}^{(T)}(b, s)$

$$
\tilde{V}_{\gamma}^{(T)}(b, s)=\sum_{a_{0: T-1}, s_{1: T}, r_{1: T}} P_{b}\left(a_{0: T-1}, s_{1: T}, r_{1: T} \mid s_{0}\right) \sum_{t=1}^{T} \gamma^{t-1} c_{t} r_{t} .
$$

Approach 1: One way to make $\tilde{V}_{\gamma}^{(T)}(b, s)$ equal to $V_{\gamma}^{(T)}(\pi, s)$ is by considering the importance weight c_{t} to be independent of t as follows:

$$
c_{t}=c:=\frac{P_{\pi}\left(a_{0: T-1}, s_{1: T}, r_{1: T} \mid s_{0}\right)}{P_{b}\left(a_{0: T-1}, s_{1: T}, r_{1: T} \mid s_{0}\right)}=\frac{\prod_{t=0}^{T-1} \pi\left(a_{t} \mid s_{t}\right) p\left(r_{t+1}, s_{t+1} \mid a_{t}, s_{t}\right)}{\prod_{t=0}^{T-1} b\left(a_{t} \mid s_{t}\right) p\left(r_{t+1}, s_{t+1} \mid a_{t}, s_{t}\right)}=\prod_{t=0}^{T-1} \frac{\pi\left(a_{t} \mid s_{t}\right)}{b\left(a_{t} \mid s_{t}\right)} .
$$

Approach 2: Another way to find a set of importance weights is to swap the expectation and summation over time in definitions of $V_{\gamma}^{(T)}(\pi, s)$:

$$
\begin{aligned}
V_{\gamma}^{(T)}(\pi, s) & =\sum_{t=1}^{T} \gamma^{t-1} \sum_{a_{0: T-1}, s_{1: T}, r_{1: T}} P_{\pi}\left(a_{0: T-1}, s_{1: T}, r_{1: T} \mid s_{0}\right) r_{t} \\
& =\sum_{t=1}^{T} \gamma^{t-1} \sum_{a_{0: T-1}, s_{1: T}, r_{1: T}} \prod_{\tau=0}^{T-1} \pi\left(a_{\tau} \mid s_{\tau}\right) p\left(r_{\tau+1}, s_{\tau+1} \mid a_{\tau}, s_{\tau}\right) r_{t}
\end{aligned}
$$

Additionally, for a given t, we have

$$
\begin{aligned}
& \sum_{a_{0: T-1}, s_{1: T}, r_{1: T}} \prod_{\tau=0}^{T-1} \pi\left(a_{\tau} \mid s_{\tau}\right) p\left(r_{\tau+1}, s_{\tau+1} \mid a_{\tau}, s_{\tau}\right) r_{t}= \\
& \sum_{a_{0: T-1}, s_{1: T}, r_{1: T}}\left(\prod_{\tau=0}^{t-1} \pi\left(a_{\tau} \mid s_{\tau}\right) p\left(r_{\tau+1}, s_{\tau+1} \mid a_{\tau}, s_{\tau}\right) r_{t}\right) \times \\
& \pi\left(a_{t} \mid s_{t}\right) p\left(r_{t+1}, s_{t+1} \mid a_{t}, s_{t}\right) \ldots \pi\left(a_{T-1} \mid s_{T-1}\right) p\left(r_{T}, s_{T} \mid a_{T-1}, s_{T-1}\right)= \\
& \sum_{a_{0: t-1}, s_{1: t}, r_{1: t}}\left(\prod_{\tau=0}^{t-1} \pi\left(a_{\tau} \mid s_{\tau}\right) p\left(r_{\tau+1}, s_{\tau+1} \mid a_{\tau}, s_{\tau}\right) r_{t}\right) \times \\
& \underbrace{\sum_{a_{t}}^{t} \pi\left(a_{t} \mid s_{t}\right)}_{=1} \underbrace{\sum_{s_{t+1}, r_{t+1}} p\left(r_{t+1}, s_{t+1} \mid a_{t}, s_{t}\right)}_{=1} \cdots \underbrace{\sum_{a_{T-1}} \pi\left(a_{T-1} \mid s_{T-1}\right.}_{=1} \underbrace{\sum_{a_{T, r_{T}}} p\left(r_{T}, s_{T} \mid a_{T-1}, s_{T-1}\right)}_{\underbrace{}_{T: t-1})}= \\
& \sum_{=1} \prod_{s_{1: t}}^{t-1} \pi\left(a_{\tau} \mid s_{\tau}\right) p\left(r_{\tau+1}, s_{\tau+1} \mid a_{\tau}, s_{\tau}\right) r_{t} .
\end{aligned}
$$

Hence, we can write

$$
V_{\gamma}^{(T)}(\pi, s)=\sum_{t=1}^{T} \gamma^{t-1} \sum_{a_{0: t-1}, s_{1: t}, r_{1: t}} \prod_{\tau=0}^{t-1} \pi\left(a_{\tau} \mid s_{\tau}\right) p\left(r_{\tau+1}, s_{\tau+1} \mid a_{\tau}, s_{\tau}\right) r_{t} .
$$

If we assume that c_{t} does not depend on $a_{\tau}, r_{\tau+1}$, and $s_{\tau+1}$ for $\tau \geq t$, then we can similarly write

$$
\tilde{V}_{\gamma}^{(T)}(b, s)=\sum_{t=1}^{T} \gamma^{t-1} \sum_{a_{0: t-1}, s_{1: t}, r_{1: t}} \prod_{\tau=0}^{t-1} b\left(a_{\tau} \mid s_{\tau}\right) p\left(r_{\tau+1}, s_{\tau+1} \mid a_{\tau}, s_{\tau}\right) c_{t} r_{t} .
$$

Hence, we can make $\tilde{V}_{\gamma}^{(T)}(b, s)$ equal to $V_{\gamma}^{(T)}(\pi, s)$ by considering

$$
c_{t}=\frac{\prod_{\tau=0}^{t-1} \pi\left(a_{\tau} \mid s_{\tau}\right) p\left(r_{\tau+1}, s_{\tau+1} \mid a_{\tau}, s_{\tau}\right)}{\prod_{\tau=0}^{t-1} b\left(a_{\tau} \mid s_{\tau}\right) p\left(r_{\tau+1}, s_{\tau+1} \mid a_{\tau}, s_{\tau}\right)}=\prod_{\tau=0}^{t-1} \frac{\pi\left(a_{\tau} \mid s_{\tau}\right)}{b\left(a_{\tau} \mid s_{\tau}\right)} .
$$

In theory, both approaches result in the same expectation values. In practice, however, we need to estimate the expectations based on the samples gathered by b, so different approaches to deriving the importance weights results in different estimations. What we showed here implies that both approaches result in unbiased estimations, but they may have different variances.

