
Artificial Neural Networks (Gerstner). Solutions for week 9

Markov Decision Processes

Exercise 1. Optimal policies for finite horizon.

Create a Markov Decision Process where the optimal horizon-T policy depends on the time step, i.e.
there is at least one state s and one pair of timesteps t and t′ such that π(t)(a|s) 6= π(t

′)(a|s).
Hint : You can choose T = 2 for simplicity.

Solution:

Consider the simple MDP in Figure 1, where we have three states s1, s2, and s3. There are 2 actions
available at s1 and s2: Action a1 takes the agent from both states s1 and s2 to state s3, through which
the agent recieves a deterministic reward of +2. Action a2 takes the agent from state s1 to s2 and
from s2 to s1, while the agent recieves a deterministic reward of +1 through both transitions. State
s3 is a terminal state with a dummy action a1 that keeps agents at state s3 (without any reward).
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Figure 1: MDP of Exercise 1

For T = 2, it is easy to see that the optimal policy is given by

π(1)(a|s1) = δa,a2 and π(1)(a|s2) = δa,a2

π(2)(a|s1) = δa,a1 and π(2)(a|s2) = δa,a1.

Exercise 2. Shortest path search.

Let S = {s1, s2, s3, . . .} denote a set of vertices (think of cities on a map) and let the vertices be
connected by some edges esi,sj ∈ (0,∞] (think of distances between cities), where esi,sj =∞ indicates
that there is no direct connection between si and sj . Dijkstra’s algorithm for finding the shortest
paths to some goal vertex g can be written in the following way (we show the lenght of the shortest
path from vertex s to g by V (s)):

• For each vertex s ∈ S, initialize all distances from g by V (s)←∞.

• Initialize the distance of g from itself by V (g)← 0.

• Define and initialize S̃ ← S.

• While S̃ is not empty

– si ← arg mins∈S̃ V (s)

– Remove si from S̃
– For each neighbor sj of si still in S̃: V (sj)← min(V (sj), V (si) + esi,sj ).

• Return V (s) for all s ∈ S.

https://en.wikipedia.org/wiki/Dijkstra's_algorithm


The output V (s) of Dijkstra’s algorithm is equal to the lenght of the shortest path from s to g. In this
exercise, we formulate the problem of finding the shortest path as a dynamic programming problem.

a. What is the equivalent Markov Decision Process for the problem of finding the shortest paths
to some goal state?
Hint : Define the goal state as an absorbing state and describe the properties of ras and pasi→sj .

b. Compare the value iteration algorithm on the MDP of part a with Dijkstra’s algorithm.

Solution:

a. We consider a deterministic MDP with the state space S and the following properties:

(i) γ = 1.

(ii) Available actions in each state s ∈ S are moving to one of the neighbouring states.

(iii) The reward corresponding to moving from s ∈ S to s′ ∈ S is equal to −es,s′ .
(iv) The goal vertix g ∈ S is the only terminal state.

Since all rewards are negative, the optimal policy in this MDP is to get to the terminal state
g ∈ S with largest cumilative reward which is equivalent to shortest distance. Hence, the negative
optimal value −V ∗(s) is equal to the shortest distance from vertix s to the source g.

b. Dijkstra’s algorithm is similar to value iteration, but it has some fundamental differences:

(i) In Dijkstra’s algorithm, the set of states whose values are updated in each iteration decreases
by one after each iteration (si is removed from S̃).

(ii) In Dijkstra’s algorithm, the arg max over all possible next actions is removed and replaced
by a comparison between the current value of the state (V (sj)) and the value of the action
that takes the agent to si (i.e., V (si) + esi,sj ).

(iii) Dijkstra’s algorithm uses the fact that transitions are deterministic and replace the aver-
aging over next state s′ in the value update directly by the value of the next state.

Exercise 3. Bellman operator.

Proof that the Bellman operator is a contraction.

Hint : Show the contraction with the infinity norm, i.e.

‖Tγ [X]− Tγ [Y ]‖∞ = max
s
|Tγ [X]s − Tγ [Y ]s| ≤ γ‖X − Y ‖∞,

where the last inequality is to be proven. You can use the notation QXsa = ras + γ
∑

s′∈S p
a
s→s′Xs′ and

the facts that |maxaQ
X
sa −maxa′ Q

Y
sa′ | ≤ maxa |QXsa −QYsa| and

∑
s′∈S p

a
s→s′ = 1.

Solution:

We start with replacing the Bellman operators in the hint by their explicit definitions

‖Tγ [X]− Tγ [Y ]‖∞ = max
s
|Tγ [X]s − Tγ [Y ]s| = max

s

∣∣∣∣max
a

QXsa −max
a′

QYsa′

∣∣∣∣ .
We can now use the fact |maxaQ

X
sa −maxa′ Q

Y
sa′ | ≤ maxa |QXsa −QYsa| as well as the definition of QXsa

and write

‖Tγ [X]− Tγ [Y ]‖∞ ≤ max
s

max
a

∣∣QXsa −QYsa∣∣
= max

s
max
a

∣∣∣∣∣
(
ras + γ

∑
s′∈S

pas→s′Xs′

)
−

(
ras + γ

∑
s′∈S

pas→s′Ys′

)∣∣∣∣∣
= max

s
max
a

∣∣∣∣∣γ∑
s′∈S

pas→s′ (Xs′ − Ys′)

∣∣∣∣∣ ≤ γmax
s

max
a

∑
s′∈S

pas→s′ |Xs′ − Ys′ | ,



where, for the last inequality, we used the fact that |
∑

s′ Zs′ | ≤
∑

s′ |Zs′ | for any vector Z. In addition,
we have

|Xs′ − Ys′ | ≤ max
s′
|Xs′ − Ys′ | = ‖X − Y ‖∞ .

Combining the last two inequalities, we have

‖Tγ [X]− Tγ [Y ]‖∞ ≤ γmax
s

max
a

∑
s′∈S

pas→s′ ‖X − Y ‖∞

≤ γ ‖X − Y ‖∞max
s

max
a

∑
s′∈S

pas→s′ ,

and, because
∑

s′∈S p
a
s→s′ = 1, we have

‖Tγ [X]− Tγ [Y ]‖∞ ≤ γ ‖X − Y ‖∞ .

If γ < 1, then the last inequality implies that the operator Tγ is a contraction mapping.

Exercise 4. Importance sampling.

Let us assume we would like to evaluate a policy π(a|s), but we can only obtain episodes

(S0, A0, R1, S1, . . . , ST−1, AT−1, RT , ST )

with policy b(a|s). We will use importance weights Ct to correct for the mismatch between the two
policies, i.e. we will compute

Ṽ (T )
γ (b, s) := Eb

[
T∑
t=1

γt−1CtRt

∣∣∣S0 = s

]
where the expectation is taken over actions sampled from policy b. How should the importance weights

Ct be chosen to have V
(T )
γ (π, s) = Ṽ

(T )
γ (b, s)?

Hint : Importance weights are themselves random variable, i.e., they depends on (S0, A0, R1, . . .).

Solution:

The value V
(T )
γ (π, s) is given by

V (T )
γ (π, s) = Eπ

[
T∑
t=1

γt−1Rt

∣∣∣S0 = s

]
=

∑
a0:T−1,s1:T ,r1:T

Pπ(a0:T−1, s1:T , r1:T |s0)
T∑
t=1

γt−1rt.

We can similarly expand Ṽ
(T )
γ (b, s)

Ṽ (T )
γ (b, s) =

∑
a0:T−1,s1:T ,r1:T

Pb(a0:T−1, s1:T , r1:T |s0)
T∑
t=1

γt−1ctrt.

Approach 1: One way to make Ṽ
(T )
γ (b, s) equal to V

(T )
γ (π, s) is by considering the importance weight

ct to be independent of t as follows:

ct = c :=
Pπ(a0:T−1, s1:T , r1:T |s0)
Pb(a0:T−1, s1:T , r1:T |s0)

=

∏T−1
t=0 π(at|st)p(rt+1, st+1|at, st)∏T−1
t=0 b(at|st)p(rt+1, st+1|at, st)

=

T−1∏
t=0

π(at|st)
b(at|st)

.

Approach 2: Another way to find a set of importance weights is to swap the expectation and

summation over time in definitions of V
(T )
γ (π, s):

V (T )
γ (π, s) =

T∑
t=1

γt−1
∑

a0:T−1,s1:T ,r1:T

Pπ(a0:T−1, s1:T , r1:T |s0)rt

=
T∑
t=1

γt−1
∑

a0:T−1,s1:T ,r1:T

T−1∏
τ=0

π(aτ |sτ )p(rτ+1, sτ+1|aτ , sτ )rt



Additionally, for a given t, we have

∑
a0:T−1,s1:T ,r1:T

T−1∏
τ=0

π(aτ |sτ )p(rτ+1, sτ+1|aτ , sτ )rt =

∑
a0:T−1,s1:T ,r1:T

(
t−1∏
τ=0

π(aτ |sτ )p(rτ+1, sτ+1|aτ , sτ )rt

)
×

π(at|st)p(rt+1, st+1|at, st) . . . π(aT−1|sT−1)p(rT , sT |aT−1, sT−1) =∑
a0:t−1,s1:t,r1:t

(
t−1∏
τ=0

π(aτ |sτ )p(rτ+1, sτ+1|aτ , sτ )rt

)
×

∑
at

π(at|st)︸ ︷︷ ︸
= 1

∑
st+1,rt+1

p(rt+1, st+1|at, st)︸ ︷︷ ︸
= 1

. . .
∑
aT−1

π(aT−1|sT−1)︸ ︷︷ ︸
= 1

∑
sT ,rT

p(rT , sT |aT−1, sT−1)︸ ︷︷ ︸
= 1

=

∑
a0:t−1,s1:t,r1:t

t−1∏
τ=0

π(aτ |sτ )p(rτ+1, sτ+1|aτ , sτ )rt.

Hence, we can write

V (T )
γ (π, s) =

T∑
t=1

γt−1
∑

a0:t−1,s1:t,r1:t

t−1∏
τ=0

π(aτ |sτ )p(rτ+1, sτ+1|aτ , sτ )rt.

If we assume that ct does not depend on aτ , rτ+1, and sτ+1 for τ ≥ t, then we can similarly write

Ṽ (T )
γ (b, s) =

T∑
t=1

γt−1
∑

a0:t−1,s1:t,r1:t

t−1∏
τ=0

b(aτ |sτ )p(rτ+1, sτ+1|aτ , sτ )ctrt.

Hence, we can make Ṽ
(T )
γ (b, s) equal to V

(T )
γ (π, s) by considering

ct =

∏t−1
τ=0 π(aτ |sτ )p(rτ+1, sτ+1|aτ , sτ )∏t−1
τ=0 b(aτ |sτ )p(rτ+1, sτ+1|aτ , sτ )

=
t−1∏
τ=0

π(aτ |sτ )

b(aτ |sτ )
.

In theory, both approaches result in the same expectation values. In practice, however, we need to
estimate the expectations based on the samples gathered by b, so different approaches to deriving
the importance weights results in different estimations. What we showed here implies that both
approaches result in unbiased estimations, but they may have different variances.


