
Advanced Probability and Applications EPFL - Spring Semester 2021-2022

Solutions to Midterm Exam

Exercise 1. Quiz. (18 points) Answer each yes/no question below (1 pt) and provide a short
justification for your answer (2 pts).

a) Let F be a σ-field on Ω and G,H be two sub-σ-fields of F .

a1) Does it always hold that G ∩ H is a σ-field ?

Note: G ∩ H is by definition the list of subsets of Ω belonging to both G and H.

Answer: Yes. ∅,Ω ∈ G∩H; if A ∈ G∩H, then Ac ∈ G∩H also; and if (An, n ≥ 1) is a sequence of
events such that An ∈ G∩H for every n ≥ 1, then ∪n≥1An ∈ G and ∪n≥1An ∈ H, so ∪n≥1An ∈ G∩H.

a2) Does it always hold that G ∪ H is a σ-field ?

Note: G ∪ H is by definition the list of subsets of Ω belonging to either G or H.

Answer: No. For example, if A ∈ G and B ∈ H, then it is not always the case that A ∪ B ∈ G
or A ∪ B ∈ H. Example: Ω = {1, 2, 3, 4}, G = σ({1, 2}), H = σ({1, 3}); then A = {1, 2} ∈ G,
B = {1, 3} ∈ G, but A ∪B = {1, 2, 3} does not belong to G, nor to H.

b) Let X,Y, Z be three random variables defined on a common probability space (Ω,F ,P).

b1) Does it always hold that σ(X,Y, Z) = σ(X + Y, Y + Z,Z +X) ?

Answer: Yes, as the transformation (x, y, z) 7→ (x+ y, y+ z, z+ x) is a one-to-one transformation

(as the computation det

1 1 0
0 1 1
1 0 1

 = 2 6= 0 shows). The knowledge of (X,Y, Z) is therefore

equivalent to that of (X + Y, Y + Z,Z +X).

b2) If σ(X + Y + Z) = σ(X,Y, Z), does that necessarily imply that X,Y, Z are independent ?

Answer: No. Here is a simple counter-example: X = Y = Z, and X is a non-constant random
variable.

c) Let X be a continuous random variable and Y be a discrete random variable which is independent
of X and also such that Y (ω) 6= 0 for all ω ∈ Ω. Let finally Z = X · Y .

c1) Is it always the case that Z is a continuous random variable ?

Answer: Yes. Let C be the countable set of (non-zero) values of Y and let us compute

FZ(t) =
∑
y∈C

P({X · Y ≤ t}|{Y = y})P({Y = y})

=
∑

y∈C,y>0

P({X ≤ t/y})P({Y = y}) +
∑

y∈C,y<0

P({X ≥ t/y})P({Y = y})
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so
FZ(t) =

∑
y∈C,y>0

FX(t/y)P({Y = y}) +
∑

y∈C,y<0

(1− FX(t/y))P({Y = y})

which is differentiable as FX is (and y never takes the value 0).

c2) Assume now that X ∼ N (0, 1) and P({Y = +1}) = P({Y = +2}) = 1
2 . Is Z a Gaussian

random variable in this case ?

Answer: No. Using the above formula, we obtain

FZ(t) =
1

2
FX(t) +

1

2
FX(t/2)

whose derivative is

pZ(t) =
1

2
√

2π

(
exp(−t2/2) +

1

2
exp(−t2/8)

)
which is not a Gaussian (it is a centered random variable, but there is no value of σ > 0 such that
pZ(t) = 1√

2πσ2
exp(−t2/2σ2)),

Exercise 2. (15 points)
a) Let λ > 0 and X ∼ E(λ), i.e., pX(x) = λ e−λx for x ≥ 0. What is the distribution of Y = µX,
where µ > 0 ?

Answer: Y ∼ E(λ/µ). The simplest way to see this is to note that since Y is a scaled version of
X, it also has an exponential distribution, and that E(Y ) = µE(X) = µ/λ.

b) Let X be a discrete random variable taking values in N and such that P({X ≥ k}) = 2
k(k+1) for

every k ≥ 1. Compute E(X).

Answer: (Side note: observe that P({X = 0}) = 0, as P({X ≥ 1}) = 1). Let us then compute

E(X) =
∑
k≥1

P({X ≥ k}) =
∑
k≥1

2

k(k + 1)
=
∑
k≥1

(
2

k
− 2

k + 1

)

= lim
n→∞

n∑
k=1

(
2

k
− 2

k + 1

)
= lim

n→∞
2− 2

n+ 1
= 2

Another option is to compute:

E(X) =
∑
k≥1

k P({X = k}) =
∑
k≥1

k (P({X ≥ k})− P({X ≥ k + 1}))

=
∑
k≥1

k

(
2

k(k + 1)
− 2

(k + 1) (k + 2)

)
=
∑
k≥1

2k

k + 1

2

k(k + 2)

= 2
∑
k≥1

2

(k + 1) (k + 2)
= 2

∑
`≥2

2

`(`+ 1)
= 2 (E(X)− 1)

so E(X) = 2.
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c) Let X be a U([0, 1]) random variable, Y be independent of X and such that P({Y = +1}) =
P({Y = −1}) = 1

2 and Z = X · Y . Compute φZ(t) ∈ R for t ∈ R.

Answer: Let us compute

φZ(t) = E(exp(itXY )) =
1

2
E(exp(itX)) +

1

2
E(exp(−itX))

=
1

2

eit − 1

it
+

1

2

e−it − 1

−it
=
eit − e−it

2it
=

sin(t)

t

Another way to obtain this result is to observe that Z ∼ U([−1,+1]) and to compute directly the
characteristic function.

d) Let X1, X2 be two square-integrable random variables such that Var(X1 +X2) = Var(X1−X2).
Compute Cov(X1, X2).

Answer: Let us expand the variance on both sides:

Var(X1 +X2) = Var(X1) + 2Cov(X1, X2) + Var(X2)

Var(X1 −X2) = Var(X1)− 2Cov(X1, X2) + Var(X2)

If the 2 variances are equal, then 2Cov(X1, X2) = −2Cov(X1, X2), meaning that Cov(X1, X2) = 0.

e) Does there exist a non-negative random variable X such that E(X) = 10 and E(2X) = 1000 ?
Justify your answer.

Answer: No. By Jensen’s inequality, it should hold that 2E(X) ≤ E(2X), but 1024 6≤ 1000.

Exercise 3. (13 points)
Let n ≥ 1 and X1, . . . , Xn be i.i.d. random variables with common cdf F (t) = exp(− exp(−t)) for
t ∈ R.

a) Verify that F is indeed a cdf.

Answer: F ′(t) = exp(− exp(−t)) exp(−t) > 0 for all t ∈ R, so F is increasing; limt→+∞ F (t) =
exp(−0) = 1, limt→−∞ F (t) = exp(−∞) = 0; and F is continuous.

b) Compute both the cdf and the pdf of

Yn = max{X1, . . . , Xn} − ln(n)

Answer: Let us compute

FYn(t) = P({max{X1, . . . , Xn} ≤ t+ ln(n)}) = P({X1 ≤ t+ ln(n)})n

= exp(− exp(−t− ln(n)))n = exp(−n exp(−t)/n) = F (t)

So for every n ≥ 1, Yn has the same cdf as X1, and its pdf is given by

pYn(t) = exp(− exp(−t)) exp(−t)
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c) Compute both the cdf and the pdf of

Zn = min{exp(−X1), . . . , exp(−Xn)}

Answer: Two possibilities here: either compute directly

P({Zn ≥ t}) = P({exp(−X1) ≥ t})n = P({X1 ≤ − ln(t)})n = exp(−n exp(ln(t))) = exp(−nt)

so that FZn(t) = 1− exp(−nt) and pZN
(t) = n exp(−nt) [in other words, Zn ∼ E(n)].

Or observe that

Zn = exp(−max{X1, . . . , Xn}) = exp(−Yn − ln(n)) =
exp(−Yn)

n

which by part b) has the same distribution as exp(−X1)
n . Then

P({Zn ≤ t}) = P({exp(−X1) ≤ nt}) = P({X1 ≥ − ln(nt)}) = 1− exp(−nt)

reaching the same conclusion.

Exercise 4. (14 points)
Let α > 0 and (Xn, n ≥ 1) be a sequence of independent random variables such that

P({Xn = +nα}) = P({Xn = −nα}) =
1

2n
and P({Xn = 0}) = 1− 1

n
for n ≥ 1

Let also Sn = X1 + . . .+Xn for n ≥ 1.

a) Compute E(Sn) and Var(Sn), then estimate both quantities as a function of n using the approx-
imation (valid for a generic value of γ ∈ R):

n∑
j=1

jγ '
∫ n

1
dxxγ

(
as an example, such an approximation allows to estimate

n∑
j=1

j '
∫ n

1
dxx ' n2

2
.
)

Answer: E(Sn) =
∑n

j=1 E(Xj) = 0 and as the Xj are independent,

Var(Sn) =
n∑
j=1

Var(Xj) =

n∑
j=1

E(X2
j ) =

n∑
j=1

j2α−1

Using the hint, the variance behaves as n gets large as

Var(Sn) '
∫ n

1
dxx2α−1 ' n2α

2α

4



b) For what values of β > 0 can you show that
Sn
nβ

P→
n→∞

0 ?

Answer: By Chebyshev’s inequality, for every ε > 0,

P
({∣∣∣∣Snnβ

∣∣∣∣ ≥ ε}) = P({|Sn| ≥ nβε}) ≤
E(S2

n)

n2β ε2
=

Var(Sn)

n2β ε2
' n2(α−β)

2α ε2

which tends to 0 as n→∞ as soon as β > α.

c) For what values of β > 0 can you show that
Sn
nβ

→
n→∞

0 almost surely ?

Answer: In order to show almost sure convergence via the Borel-Cantelli lemma, we need to show
that ∑

n≥1
P
({∣∣∣∣Snnβ

∣∣∣∣ ≥ ε}) < +∞

As ∑
n≥1

P
({∣∣∣∣Snnβ

∣∣∣∣ ≥ ε}) ∼≤∑
n≥1

n2(α−β)

2α ε2

the sum is finite if 2(α− β) < −1, i.e., β > α+ 1
2 .
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