
## 1. H<sub>2</sub> filling station

How big an electrolyser is needed to produce the daily amount of H<sub>2</sub> for a filling station (HRS: hydrogen refuelling station)), under the following assumptions?:

- 1000 cars/day, equivalent of 50 L gasoline/car (LHV\_gasoline: 33 MJ/L)
- car average consumption : 7 L gasoline/100km
- a FCEV (fuel cell electric vehicle) consumes 1 kg H<sub>2</sub>/100km (HHV\_H<sub>2</sub> : 142 MJ/kg)
- water electrolyser efficiency (electricity  $\rightarrow$  H<sub>2</sub>): 78% HHV
- compression energy needed to 400 bar (Roughly 8% of HHV)
- the electrolyser operates 50% of the time
- Extrapolate the electrolysis power needed for 150 HRS, which is ~the quantity of existing natural gas filling stations in Switzerland, enough to cover most of the territory. Comment.



## 2. Power-to-gas

Switzerland stores yearly about 4 TWhe of electricity via hydro-pumping (200 GWhe per month). Assume instead that this amount of electricity were used to generate  $H_2$  via electrolysis, which would then be combined with  $CO_2$  in a methanation reaction to produce synthetic methane  $CH_4$  for injection into the natural gas grid.

- Assume ~continuous operation: what is the installed electrolysis power? (MWe)
- Use 100% efficiency for steam electrolysis, how much H<sub>2</sub> is generated per day? (m<sup>3</sup>/day)
- How much CO<sub>2</sub> is needed for methanation? (4 H<sub>2</sub> + CO<sub>2</sub> ⇔ CH<sub>4</sub> + 2 H<sub>2</sub>O)
- How does this compare with Switzerland's CO<sub>2</sub> emissions?
- How much CH<sub>4</sub> would be generated per year?
- How does this compare to the yearly Swiss natural gas consumption of 35 TWh (126 PJ)?