Artificial Neural Networks (Gerstner). Exercises for week 12

Intrinsically motivated exploration

Exercise 1. How fast can we find the goal state with a stationary policy?

Consider an environment with the state space \mathcal{S}, a goal (terminal) state $G \in \mathcal{S}$, and an action space \mathcal{A} in non-gaol states (i.e., $\mathcal{S}-\{G\}$). After taking action $a \in \mathcal{A}$ in state $s \in \mathcal{S}$, the agent moves to state $s^{\prime} \in \mathcal{S}$ with the transition probability $p\left(s^{\prime} \mid s, a\right)$. These transition probabilities are unknown to the agent. We use T to denote the first time an agent find the goal state G, i.e., $s_{T}=G$. If we assume that the agent uses a stationary policy π, then we can define the average of T given each initial state $s \in \mathcal{S}$ as

$$
\mu_{\pi}(s):=\mathbb{E}_{\pi}\left[T \mid s_{0}=s\right]
$$

where s_{0} is the state at time $t=0$. In this exercise, we study $\mu_{\pi}(s)$ in its most general case.
a. What is the value of $\mu_{\pi}(G)$?

Hint: Note that T is equal to the smallest $t \geq 0$ when we have $s_{t}=G$.
b. What is the realtionship between $\mathbb{E}_{\pi}\left[T \mid s_{1}=s\right]$ and $\mu_{\pi}(s)$?

Hint: Note that $\mu_{\pi}(s)$ is the average of T if the agent starts in state s at time $t=0$, whereas $\mathbb{E}_{\pi}\left[T \mid s_{1}=s\right]$ is the average of T if the agent starts in state s at time $t=1$.
c. Find a system of linear equations for finding $\mu_{\pi}(s)$ for $s \in \mathcal{S}-\{G\}$.

Hint: Use the fact that $p_{\pi}\left(s^{\prime} \mid s\right)=\sum_{a \in \mathcal{A}} \pi(a \mid s) p\left(s^{\prime} \mid s, a\right)$.

Exercise 2. The magic of seeking novelty.

Consider a special case of the environment in Exercise 1 with $N+2$ states: $\mathcal{S}=\{0,1, \ldots, N, G\}$, where G is the goal (terminal) state. At each non-goal state $s \in\{0, \ldots, N\}$, two actions a and a^{\prime} are available that connect different states through deterministic transitions shown in Figure 1. In this exercise, we study how fast an agent

Figure 1: Environment of Exercise 2
that does not know the environment's structure can find the goal state G.
Part I. Random exploration. First, we consider purely random exploration: $\pi(a \mid s)=\pi\left(a^{\prime} \mid s\right)=0.5$. Because of the particular structure of the environment in Figure 1, solving the system of linear equations that you found in Exercise 1 for $\mu_{\pi}(s)$ becomes exceptionally easy:
a. Find $\mu_{\pi}(N)$ as a function of $\mu_{\pi}(0)$.

Hint: Use the system of linear equations you that found in Exercise 1c.
b. Find $\mu_{\pi}(n)$, for $n<N$ as a function of $\mu_{\pi}(0)$ and n.

Hint: Repeatedly apply the trick of part a for state $N-1, N-2$, down to $n<N$.
c. Find $\mu_{\pi}(0)$ as a function of N. How does it scale with N for large N ?

Hint: Use part b and write $\mu_{\pi}(0)$ as a function of itself. Then solve the equation.
Part II. Novelty-seeking. To gain intuition about novelty-seeking, we consider a simple cartoon example: We assume

- The state space is very big, i.e., $N \gg 1$.
- The agent starts in state 0 and explores the environment for $T_{0} \ll \mu_{\pi}(0)$ steps with random exploration.
- The agent does not find the goal state in these T_{0} steps of random exploration.
- $s_{T_{0}}=0$.

By the end of the initial T_{0} steps of random exploration, the agent has encountered state 0 many times, so the novelty of state 0 is on average much smaller than novelty of other states. This implies that, at the end of the initial T_{0} steps of random exploration, state 0 is considered as a 'bad' state by an agent that seeks novelty.

Starting from $t=T_{0}$, we consider the following simple novelty-seeking policy:

- $t \leftarrow T_{0}$
- While $s_{t} \neq G$:
- If it is the first time in state s_{t} after the first T_{0} steps:
* Pick action $a_{t} \in\left\{a, a^{\prime}\right\}$ at random.
* Observe state s_{t+1}.
* If $s_{t+1}=0$
- $a_{\text {bad }}\left(s_{t}\right) \leftarrow a_{t}$ and $a_{\text {good }}\left(s_{t}\right) \leftarrow!a_{t}$,
where ! a_{t} is the non-chosen action (e.g., if $a_{t}=a$, then ! $a_{t}=a^{\prime}$).
else
- $a_{\text {good }}\left(s_{t}\right) \leftarrow a_{t}$ and $a_{\text {bad }}\left(s_{t}\right) \leftarrow!a_{t}$,
where ! a_{t} is the non-chosen action (e.g., if $a_{t}=a$, then ! $a_{t}=a^{\prime}$).
- If it is not the first time in state s_{t} after the first T_{0} steps:
* Pick action $a_{t}=a_{\text {good }}\left(s_{t}\right)$.
* Observe state s_{t+1}.
$-t \leftarrow t+1$
Let $T(s) \geq T_{0}$ be the 1st time after T_{0} that the agent visit state s, e.g., $T(0)=T_{0}$.
a. For $n \in\{1, \ldots, N\}$, what is the minimum value of $T(n)$ for the novelty-seeking policy described above? We denote this value $T_{\text {min }}(n)$.
Hint: $T_{\min }(n)$ corresponds to the case where the random action-selection step of novelty-seeking always picks the 'good' action.
b. For $n \in\{1, \ldots, N\}$, what is the maximum value of $T(n)$ for the novelty-seeking policy described above? We denote this value $T_{\max }(n)$.
Hint: $T_{\max }(n)$ corresponds to the case where the random action-selection step of novelty-seeking always picks the 'bad' action.
c. Find the corresponding values for $T_{\min }(G)$ and $T_{\max }(G)$. How do these values scale with N for large N ? Compare your results with the scaling of $\mu_{\pi}(0)$ for random exploration.

