Artificial Neural Networks (Gerstner). Exercises for week 13

Intrinsically motivated exploration

Exercise 1. Information-gain, surprise, and the number of observations

Consider an environment with a finite set of states S and a finite set of actions A. At each time t > 0, we assume that the agent uses its past experiences (i.e., $s_0, a_0, \dots, s_{t-1}, a_{t-1}, s_t$) and estimates the environment transition probabilities as

$$\hat{p}^{(t)}(s'|s,a) = \frac{T_{s,a,s'}^{(t)} + \epsilon}{T_{s,a}^{(t)} + |\mathcal{S}|\epsilon}$$

where $T_{s,a}^{(t)}$ is the number of times that the agent has taken action a in state s until time t, $T_{s,a,s'}^{(t)}$ is the number of times that taking action a in state s took the agent to state s', $|\mathcal{S}|$ is the total number of states, and $\epsilon > 0$ is a small constant to avoid division by zero.

Consider $s_t = s$ and $a_t = a$. In this exercise, we study the Information Gain (IG) of the transition $(s, a) \rightarrow s_{t+1}$ and its link to surprise and number of observations.

- a. Given the transition $(s, a) \to s_{t+1}$ at t + 1, what is the updated $\hat{p}^{(t+1)}(s'|s, a)$ for all $s' \in S$? Write your answer as a function of $T_{s,a,s'}^{(t)}, T_{s,a}^{(t)}, |S|$ and ϵ .
- b. Show that

$$\hat{p}^{(t+1)}(s'|s,a) - \hat{p}^{(t)}(s'|s,a) = \frac{1}{T_{s,a}^{(t)} + |\mathcal{S}|\epsilon + 1} \left(\delta_{s',s_{t+1}} - \hat{p}^{(t)}(s'|s,a) \right),$$

where δ is the Kronecker delta function.

c. One appraach to define information gain is the L1 norm of the difference between $\hat{p}^{(t+1)}(.|s,a)$ and $\hat{p}^{(t)}(.|s,a)$:

$$\mathrm{IG}_{t+1} = \sum_{s' \in \mathcal{S}} \left| \hat{p}^{(t+1)}(s'|s,a) - \hat{p}^{(t)}(s'|s,a) \right|.$$

Find IG_{t+1} as a function of $T_{s,a}^{(t)}$, $|\mathcal{S}|$, ϵ , and $\hat{p}^{(t)}(s_{t+1}|s,a)$.

How does increasing the number of observation $T_{s,a}^{(t)}$ influence the information gain IG_{t+1}?

d. One of the many ways to define the surprise of the transition $(s, a) \rightarrow s_{t+1}$ is to use the notion of 'State Prediction Error' (see Modirshanechi et al. 2022 for its link to other definitions of surprise):

$$SPE_{t+1} = 1 - \hat{p}^{(t)}(s_{t+1}|s, a).$$

Rewrite IG_{t+1} as a function of $T_{s,a}^{(t)}$, $|\mathcal{S}|$, ϵ , and SPE_{t+1} .

How does the information gain IG_{t+1} relate to the state prediction error SPE_{t+1} ?

e. Assume that we know the true transition probabilities p(.|s,a) and that $\lim_{t\to\infty} T_{s,a}^{(t)} = \infty$ (i.e., agents choose each action infinitely many times). For a given next state $s_{t+1} = s'$, find the limits

$$\lim_{t \to \infty} SPE_{t+1} \quad \text{and} \quad \lim_{t \to \infty} IG_{t+1}.$$

What do these results imply about seeking SPE or IG as intrinsic rewards in the presence of stochasticity? Which intrinsic reward is less prone to the noisy-TV problem?

Exercise 2. Disagreement and information-gain

Consider an environment with a finite set of states S and a finite set of actions A. At each time t > 0, we assume that the agent uses its past experiences (i.e., $s_0, a_0, \dots, s_{t-1}, a_{t-1}, s_t$) and estimates the environment transition probabilities with K different and parallel models, i.e., for $k \in \{1, \dots, K\}$, we have

$$\hat{p}_{k}^{(t)}(s'|s,a) = \frac{T_{s,a,s'}^{(t)} + \hat{p}_{k}^{(0)}(s'|s,a)}{T_{s,a}^{(t)} + 1},$$

where $T_{s,a}^{(t)}$ is the number of times that the agent has taken action a in state s until time t, $T_{s,a,s'}^{(t)}$ is the number of times that taking action a in state s took the agent to state s', and $\hat{p}_k^{(0)}(s'|s,a)$ is the random initialization of model $k \in \{1, \ldots, K\}$. The agent uses

$$\hat{p}^{(t)}(s'|s,a) = \frac{1}{K} \sum_{k=1}^{K} \hat{p}_{k}^{(t)}(s'|s,a) = \frac{T_{s,a,s'}^{(t)} + \hat{p}^{(0)}(s'|s,a)}{T_{s,a}^{(t)} + 1},$$

as its final estimate.

Consider $s_t = s$ and $a_t = a$. In this exercise, we study how the disagreement of the different K models relate to the information-gain of the transition $(s, a) \rightarrow s_{t+1}$.

a. Repeat what you did in Exercise 1 to calculate the information gain defined as

$$IG_{t+1} = \sum_{s' \in \mathcal{S}} \left| \hat{p}^{(t+1)}(s'|s, a) - \hat{p}^{(t)}(s'|s, a) \right|$$

as a function of $T_{s,a}^{(t)}$ and $\text{SPE}_{t+1} = 1 - \hat{p}^{(t)}(s_{t+1}|s,a)$.

b. We define the disagreement at time t as

$$D_t = \frac{1}{K} \sum_{k=1}^K \sum_{s \in S} \left(\hat{p}^{(t)}(s'|s, a) - \hat{p}_k^{(t)}(s'|s, a) \right)^2.$$

Find D_t as a function of $T_{s,a}^{(t)}$ and the initial disagreement D_0 at t = 0.

c. We now compare three different intrinsic rewards: the State Prediction Error SPE, the Information Gain IG, and the Disagreement D. Let us assume that we know the true transition probabilities p(.|s, a) and that $\lim_{t\to\infty} T_{s,a}^{(t)} = \infty$ (i.e., agents choose each action infinitely many times). For a given next state $s_{t+1} = s'$, compare the limits

$$\lim_{t \to \infty} \text{SPE}_{t+1}, \quad \lim_{t \to \infty} \text{IG}_{t+1}, \quad \text{and} \quad \lim_{t \to \infty} \text{D}_t.$$

What do these results imply about seeking these different intrinsic rewards in the presence of stochasticity? Which intrinsic reward is less prone to the noisy-TV problem?