
Artificial Neural Networks (Gerstner). Solutions for week 13

Intrinsically motivated exploration

Exercise 1. Information-gain, surprise, and the number of observations

Consider an environment with a finite set of states S and a finite set of actions A. At each time t > 0, we
assume that the agent uses its past experiences (i.e., s0, a0, · · · , st−1, at−1, st) and estimates the environment
transition probabilities as

p̂(t)(s′|s, a) =
T

(t)
s,a,s′ + ε

T
(t)
s,a + |S|ε

,

where T
(t)
s,a is the number of times that the agent has taken action a in state s until time t, T

(t)
s,a,s′ is the number

of times that taking action a in state s took the agent to state s′, |S| is the total number of states, and ε > 0
is a small constant to avoid division by zero.

Consider st = s and at = a. In this exercise, we study the Information Gain (IG) of the transition (s, a)→ st+1

and its link to surprise and number of observations.

a. Given the transition (s, a) → st+1 at t + 1, what is the updated p̂(t+1)(s′|s, a) for all s′ ∈ S? Write your

answer as a function of T
(t)
s,a,s′ , T

(t)
s,a, |S| and ε.

b. Show that

p̂(t+1)(s′|s, a)− p̂(t)(s′|s, a) =
1

T
(t)
s,a + |S|ε+ 1

(
δs′,st+1

− p̂(t)(s′|s, a)
)
,

where δ is the Kronecker delta function.

c. One appraoch to define information gain is the L1 norm of the difference between p̂(t+1)(.|s, a) and
p̂(t)(.|s, a):

IGt+1 =
∑
s′∈S

∣∣∣p̂(t+1)(s′|s, a)− p̂(t)(s′|s, a)
∣∣∣.

Find IGt+1 as a function of T
(t)
s,a, |S|, ε, and p̂(t)(st+1|s, a).

How does increasing the number of observation T
(t)
s,a influence the information gain IGt+1?

d. One of the many ways to define the surprise of the transition (s, a) → st+1 is to use the notion of ‘State
Prediction Error’ (see Modirshanechi et al. 2022 for its link to other definitions of surprise):

SPEt+1 = 1− p̂(t)(st+1|s, a).

Rewrite IGt+1 as a function of T
(t)
s,a, |S|, ε, and SPEt+1.

How does the information gain IGt+1 relate to the state prediction error SPEt+1?

e. Assume that we know the true transition probabilities p(.|s, a) and that limt→∞ T
(t)
s,a = ∞ (i.e., agents

choose each action inifnitely many times). For a given next state st+1 = s′, find the limits

lim
t→∞

SPEt+1 and lim
t→∞

IGt+1.

What do these results imply about seeking SPE or IG as intrinsic rewards in the presence of stochasticity?

Which intrinsic reward is less prone to the noisy-TV problem?

Solution:

a. Using the definition of the estimated transition probabilities, we have

p̂(t+1)(s′|s, a) =
T

(t+1)
s,a,s′ + ε

T
(t+1)
s,a + |S|ε

=
T

(t)
s,a,s′ + ε+ δs′,st+1

T
(t)
s,a + |S|ε+ 1

.
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b. Using part a, we can write

p̂(t+1)(s′|s, a)− p̂(t)(s′|s, a) =
T

(t)
s,a,s′ + ε+ δs′,st+1

T
(t)
s,a + |S|ε+ 1

−
T

(t)
s,a,s′ + ε

T
(t)
s,a + |S|ε

=
1

T
(t)
s,a + |S|ε+ 1

(
T

(t)
s,a,s′ + ε+ δs′,st+1

−
(
T

(t)
s,a,s′ + ε

) T (t)
s,a + |S|ε+ 1

T
(t)
s,a + |S|ε︸ ︷︷ ︸

=1+ 1

T
(t)
s,a+|S|ε

)
.

By simplifying the term in the parantheses and reusing the definition of p̂(t)(s′|s, a), we have

p̂(t+1)(s′|s, a)− p̂(t)(s′|s, a) =
1

T
(t)
s,a + |S|ε+ 1

(
δs′,st+1

− p̂(t)(s′|s, a)
)
.

c. We can use the result of part b and write

IGt+1 =
1

T
(t)
s,a + |S|ε+ 1

∑
s′∈S

∣∣∣δs′,st+1
− p̂(t)(s′|s, a)

∣∣∣
=

1

T
(t)
s,a + |S|ε+ 1

(
1− p̂(t)(st+1|s, a) +

∑
s′∈S−{st+1}

p̂(t)(s′|s, a)

︸ ︷︷ ︸
=1−p̂(t)(st+1|s,a)

)
=

2
(
1− p̂(t)(st+1|s, a)

)
T

(t)
s,a + |S|ε+ 1

.

IGt+1 is a strictly decreasing function T
(t)
s,a.

d. We can use the result of part c and write

IGt+1 =
2 SPEt+1

T
(t)
s,a + |S|ε+ 1

.

This means that the information-gain as defined in this exercise is equal to a scaled version of the state
prediction error, while the scaling factor decreases over time. Hence, the same SPE will lead to less
changes in the estimate of transition probabilities with accumulation of observations.

e. We have

lim
t→∞

SPEt+1 = 1− lim
t→∞

T
(t)
s,a,s′ + ε

T
(t)
s,a + |S|ε

= 1− p(s′|s, a)

and

lim
t→∞

IGt+1 = lim
t→∞

2 SPEt+1

T
(t)
s,a + |S|ε+ 1

= lim
t→∞

2 limt→∞ SPEt+1

T
(t)
s,a + |S|ε+ 1

= lim
t→∞

2 (1− p(s′|s, a))

T
(t)
s,a + |S|ε+ 1

= 0.

This implies that the limit of IG is always equal to zero independently of the level of the stochasticity in
the environment. However, SPE can have high values even in the limit of t → ∞ if the environment is
stochastic (if 0 < p(s′|s, a) < 1). Hence, SPE is prone to the Noisy-TV problem but IG is not.

Exercise 2. Disagreement and information-gain

Consider an environment with a finite set of states S and a finite set of actions A. At each time t > 0, we
assume that the agent uses its past experiences (i.e., s0, a0, · · · , st−1, at−1, st) and estimates the environment
transition probabilities with K different and parallel models, i.e., for k ∈ {1, . . . ,K}, we have

p̂
(t)
k (s′|s, a) =

T
(t)
s,a,s′ + p̂

(0)
k (s′|s, a)

T
(t)
s,a + 1

,

where T
(t)
s,a is the number of times that the agent has taken action a in state s until time t, T

(t)
s,a,s′ is the number

of times that taking action a in state s took the agent to state s′, and p̂
(0)
k (s′|s, a) is the random initialization

of model k ∈ {1, . . . ,K}. The agent uses

p̂(t)(s′|s, a) =
1

K

K∑
k=1

p̂
(t)
k (s′|s, a) =

T
(t)
s,a,s′ + p̂(0)(s′|s, a)

T
(t)
s,a + 1

,



as its final estimate.

Consider st = s and at = a. In this exercise, we study how the disagreement of the different K models relate
to the information-gain of the transition (s, a)→ st+1.

a. Repeat what you did in Exercise 1 to calculate the information gain defined as

IGt+1 =
∑
s′∈S

∣∣∣p̂(t+1)(s′|s, a)− p̂(t)(s′|s, a)
∣∣∣

as a function of T
(t)
s,a and SPEt+1 = 1− p̂(t)(st+1|s, a).

b. We define the disagreement at time t as

Dt =
1

K

K∑
k=1

∑
s∈S

(
p̂(t)(s′|s, a)− p̂(t)k (s′|s, a)

)2
.

Find Dt as a function of T
(t)
s,a and the initial disagreement D0 at t = 0.

c. We now compare three different intrinsic rewards: the State Prediction Error SPE, the Information Gain
IG, and the Disagreement D. Let us assume that we know the true transition probabilities p(.|s, a) and

that limt→∞ T
(t)
s,a = ∞ (i.e., agents choose each action infinitely many times). For a given next state

st+1 = s′, compare the limits

lim
t→∞

SPEt+1, lim
t→∞

IGt+1, and lim
t→∞

Dt.

What do these results imply about seeking these different intrinsic rewards in the presence of stochasticity?

Which intrinsic reward is less prone to the noisy-TV problem?

Solution:

a. We can repeat the exact same procedure as in Exercise 1 and find

IGt+1 =
2 SPEt+1

T
(t)
s,a + 2

.

b. Using the definition of Dt, we have

Dt =
1

K

K∑
k=1

∑
s∈S

(
T

(t)
s,a,s′ + p̂(0)(s′|s, a)

T
(t)
s,a + 1

−
T

(t)
s,a,s′ + p̂

(0)
k (s′|s, a)

T
(t)
s,a + 1

)2

=
1(

T
(t)
s,a + 1

)2 1

K

K∑
k=1

∑
s∈S

(
p̂(0)(s′|s, a)− p̂(0)k (s′|s, a)

)2
=

D0(
T

(t)
s,a + 1

)2 .
c. We have (similar to Exercise 1)

lim
t→∞

SPEt+1 = 1− p(s′|s, a), lim
t→∞

IGt+1 = 0, and lim
t→∞

Dt = 0.

This implies that the limits of disagreement and IG are always equal to zero independently of the level of
the stochasticity in the environment. However, SPE can have high values even in the limit of t → ∞ if
the environment is stochastic (if 0 < p(s′|s, a) < 1). Hence, disagreement and IG are robust with respect
to the noisy-TV problem.


