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Problem 1. VC Dimension (20 pts)

In this problem we consider hypothesis functions from R2 to {0, 1}. We have seen in the

homework that VCdim(Hrec) = 4, where Hrec is the class of all rectangles in R2. Let us see

some other examples.

1. (10 pts) (Circles) Let H1 = {hC(x)} with hC(x) = I(x is inside the circle C), where a

circle C is determined by a center and a radius.

(a) (3 pts) What is VCdim(H1)? Call your answer d1.

(b) (3 pts) Show that VCdim(H1) ≥ d1.

(Hint: You can propose an instance of d1 points and for each labelling draw the

valid circle.)

(c) (4 pts) Show that VCdim(H1) ≤ d1.

Hint: You should consider two cases:

• one of the points x is in the convex hull of the other points; OR

• none of the points is in the convex hull of the other points.

A formal proof might be difficult. It will suffice if you give us a “convincing”

argument.

2. (10 pts)(Unbiased neurons) Let H2 = {hα1,α2(x) : α1, α2 ∈ R} with

hα1,α2(x) = I
(

tanh(α2x2 + α1x1) > 0
)
.

(a) (3 pts) What is VCdim(H2)? Call your answer d2.

(b) (3 pts) Show that VCdim(H2) ≥ d2.

(c) (4 pts) Show that VCdim(H2) ≤ d2.

Solution:

1. (a) VCdim(H1) = 3

(b) Take three points in R2 located at the corners of an equilateral triangle. It is then

clear that a circle can select any single one of these points, but also any pair of

points and of course also all three points together.

(c) Take 4 points. Assume first that one of the points x is in the convex hull of the

other 3 points. It is then impossible to label the 3 points with ‘1’ and label the

point x with ‘0’.

If this is not the case, then the convex hull of the 4 points is a convex quadrilateral.

Let x(1) and x(3) be a pair of points along a diagonal, and let x(2) and x(4) the other

pair (along the second diagonal). The two diagonal line segments, called L1 and
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L2, must intersect each other. Now we claim that it is impossible to have circles

such that the corresponding functions implement both (y1, y2, y3, y4) = (0, 1, 0, 1)

and (y1, y2, y3, y4) = (1, 0, 1, 0). This is true since it is impossible to have two

circles C1 and C2 such that

• C1 contains only x(1) and x(3), C2 contains only x(2) and x(4), and

• L1 cuts L2.

If such C1 and C2 existed, it would imply that (C1∪C2) \ (C1∩C2) has 4 disjoint

parts.

2. Note that tanh does not change the sign of α2x2 + α1x1, so we don’t need to bother

with the tanh in analysis.

VCdim(H2) ≥ 2: given any two samples (x(1), y(1)) and (x(2), y(2)) with x(1) and x(2)

linearly independent, we can find valid α1, α2 by solving[
x(1)

x(2)

] [
α1

α2

]
=

[
b(1)

b(2)

]
where b(i) is any real numbers that has the same sign with (−1)1+y(i) .

VCdim(H2) ≤ 2: For any three points x(1),x(2),x(3), one can propose y(1), y(2), y(3)

such that H2 does not shatter the 3 points. This amounts to showing that there exists

y(1), y(2), y(3) such that x(1)

x(2)

x(3)

[α1

α2

]
=

b(1)

b(2)

b(3)

 (1)

has no solutions, with b(i) as defined above. In R2 any three points are linearly depen-

dent. So (1) is degenerated. We can assume x(3) = w1x
(1) +w2x

(2) for some w1, w2 ∈ R.

Suppose y(1), y(2) allows a solution of α1, α2 for the first two equations of (1). However,

if one chooses y(3) such that
∑2

i=1

∑2
j=1wiαjx

(i)
j has a different sign from (−1)1+y(3) ,

then (1) has no solution.
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Problem 2. GD and SGD (20 pts)

1. (15 pts) Consider the Least Squares optimization problem:

x∗ = arg min
x∈Rn

f(x),

where f(x) = 1
2
||Ax−b||22, b ∈ Rm. We assume that A is a full column rank matrix in

Rm×n, n ≤ m, and that there exists a solution to the linear system Ax = b. Let σmax

and σmin be the largest and the smallest singular values of A and consider the gradient

descent method

xt+1 = xt − α∇f(xt)

with a fixed step size α = 1/σmax(A)2.

(a) (5 pts) Show that σmax(I − αATA) = 1− ασmin(A)2 = 1− σmin(A)2

σmax(A)2
.

(b) (5 pts) Calculate the gradient ∇f(x) and rewrite the GD using this gradient.

(c) (5 pts) Show that the procedure converges as

||xt+1 − x∗||2 ≤ (1− σmin(A)2

σmax(A)2
)||xt − x∗||2.

2. (5 pts) Let us now consider the SGD. In this case one can show a convergence of the

form

E[||xt+1 − x∗||22] ≤ (1− σmin(A)2

||A||2F
)E[||xt − x∗||22]

where ‖A‖F is the Frobenius norm. How does this compare to GD? Which is better?

Solution:

1. (a) Assume that A has the singular value decomposition UDV T . Plugging this into

the expression I−αATA we see that I−αATA has the singular value decomposi-

tion V D′V T , where D′ is of dimension n×n and has the singular values 1−ασ2
i .

For the given choice of α all these singular values are non-negative and the largest

is 1− ασ2
min(A) = 1− σ2

min(A)

σ2
max(A)

.

(b) We get

∇f(x) = AT (Ax− b) = ATA(x− x∗),

where we used the fact that A has full column rank so that Ax∗ = b. Hence GD

can be rewritten as

xt+1 = xt − αATA(xt − x∗). (2)
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(c) Subtracting x∗ from both sides of (2) gives

xt+1 − x∗ = xt − x∗ − αATA(xt − x∗) = (I − αATA)(xt − x∗).

By taking norms we obtain

||xt+1 − x∗||2 ≤ σmax(I − αATA)||xt − x∗||2
= (1− ασmin(A)2)||xt − x∗||2.

2. Recall that ||A||2F =
∑

i σi(A)2, where σi(A) is the i-th singular value of A. Therefore

for GD we have a factor 1− σmin(A)2

σmax(A)2
and for SGD a factor

√
1− σmin(A)2∑

i σi(A)2
(because of

the squared norm). The second expression is closer to 1, so GD converges faster.
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Problem 3. Probabilistic graphical models (20 pts)

Let Xt, t = 0, 1, 2 a random walk on the state space Z (Markov chain) with initial distribution

P(X0) and transition probability P(Xt+1 = i+1|Xt = i) = p, P(Xt+1 = i−1|Xt = i) = 1−p,
and zero otherwise (here 0 < p < 1). We suppose that we have ”observations” Yt of the state

at time t given by the output of an additive Gaussian noise channel:

Yt = Xt + σξt, t = 0, 1, 2

where ξt ∼ N (0, 1) is Gaussian of mean zero and variance 1. The setting corresponds to the

belief network of a Hidden Markov Model (Figure 1).
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Figure 1: Belief Network

1. (4 pts) Write down the joint probability distribution of the whole belief network.

2. (4 pts) Are Y0 and Y2 independent random variables when conditioned onX1 ? Are they

independent when we do not condition ? (no calculation but justification required).

3. (2 pts) Convert the belief network to a Markov Random Field and identify the maximal

cliques, the corresponding factors, and the normalization factor Z.

4. (2 pts) From now on we initialize the Markov chain at time t = 0 with X0 = 0. What is

the initial distribution P(X0) ? And what is the effective alphabet (or possible values)

of the random variables X1, X2, Y1, Y2, Y3 ?

5. For this question the initialization is again X0 = 0. We consider the Factor Graph

representation of Figure 2.

a) (6 pts) Set up the message passing equations and compute the marginal µ(Y2)

from those (see the recap of message passing equations below if needed). Express

the result explicitly in terms of p and σ.

b) (2 pts) Do you think this calculation gives the exact marginal ? Say why.

RECAP: Message passing equations for a general factor graph model p(x) ∝
∏

a fa({xj : j ∈
∂a}):

µi→a(xi) =
∏
b∈∂i\a

µb→i(xi), µa→i(xi) =
∑

xj :j∈∂a\i

fa({xj, j ∈ ∂a})
∏
j∈∂a\i

µj→a(xj)
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Figure 2: Factor Graph

A leaf node is initialized with µi→a(xi) = 1 and marginals are given by µi(xi) ∝
∏

a∈∂i µa→i(xi).

Solution:

1. We have

P(X0, X1, X2, Y0, Y1, Y2) = P(X0)P(X1|X0)P(X2|X1)
e−

1
2σ2

(Y0−X0)2

√
2πσ2

e−
1

2σ2
(Y1−X1)2

√
2πσ2

e−
1

2σ2
(Y2−X2)2

√
2πσ2

2. The path connecting Y0 and Y2 hits X1 in a head to tail configuration. Therefore (as

seen in class), Y0, Y2 are independent conditioned on X1. They are not independent

without conditioning: indeed we have

P(Y0, Y2) =
∑
X0∈Z

P(X0)
e−

1
2σ2

(Y0−X0)2

√
2πσ2

P(Y2|X0)

Since P(Y2|X0) non-trivialy depends on X0, P(Y0, Y2) 6= P(Y0)P(Y2).

3. The MRF graph is the same graph but undirected. Maximal cliques are all edges. The

MRF is
1

Z
ψ1(X0, X1)ψ2(X1, X2)ψ3(X0, Y0)ψ4(X1, Y1)ψ5(X2, Y2)

with Z = 1 and

ψ1(X0, X1) = P(X0)P(X1|X0)

ψ2(X1, X2) = P(X2|X1)

ψ3(X0, Y0) =
e−

1
2σ2

(Y0−X0)2

√
2πσ2

ψ4(X1, Y1) =
e−

1
2σ2

(Y1−X1)2

√
2πσ2

ψ5(X2, Y2) =
e−

1
2σ2

(Y2−X2)2

√
2πσ2
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4. Because of the initialization we have P(X0) = δX0,0. And the possible values for the

r.v’s are X1 ∈ {±1}, X2 ∈ {0,±2}, Y0, Y1, Y2 ∈ R.

5. a) First we identify carefully the factors. Then

µY0→a(Y0) = 1, µa→X0(X0) =

∫
dY0

e−
1

2σ2
(Y0−X0)2

√
2πσ2

× 1 = 1

µX0→d(X0) = δX0,0 × 1, µd→X1(X1) =
∑
X0

P(X1|X0)δX0,0 = P(X1|X0 = 0)

µb→X1(X1) = 1, µX1→e(X1) = P(X1|X0 = 0)× 1

µe→X2(X2) =
∑
X1

P(X2|X1)µX1→e(X1) =
∑
X1

P(X2|X1)P(X1|X0 = 0)

µX2→c(X2) = µe→X2(X2) =
∑
X1

P(X2|X1)P(X1|X0 = 0)

µe→Y2(Y2) =
∑
X2

e−
1

2σ2
(Y2−X2)2

√
2πσ2

µX2→c(X2)

=
∑
X2

e−
1

2σ2
(Y2−X2)2

√
2πσ2

∑
X1

P(X2|X1)P(X1|X0 = 0)

This last expression is also the marginal. Explicitly in terms of p and σ:

µ(Y2) = p2 e
− 1

2σ2
(Y2−2)2

√
2πσ2

+ (1− p)2 e
− 1

2σ2
(Y2+2)2

√
2πσ2

+ p(1− p)e
− 1

2σ2
(Y2)2

√
2πσ2

+ p(1− p)e
− 1

2σ2
(Y2)2

√
2πσ2

b) This marginal is exact because the factor graph is a tree.
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Problem 4. Tensor methods (20 pts)

Let [µ1, · · · ,µk] a set of k linearly independent column vectors of dimension n (with real

components). We will assume throughout that these vectors have unit norm. Set

T2 =
k∑
i=1

wiµi ⊗ µi, T3 =
k∑
i=1

wiµi ⊗ µi ⊗ µi

where wi, i = 1, · · · , k, are real nonzero values.

We are given the arrays of components Tαβ2 , Tαβγ3 , α, β, γ ∈ {1, · · · , n} and want to determine

w1, · · · , wk and [µ1, · · · ,µk]. This problem guides you through a method that uses the

simultaneous diagonalization of appropriate matrices.

The following multilinear transformation of T3 will be used

T3(I, I,u) =
k∑
i=1

wi(µi ⊗ µi)(uTµi)

where I denotes the identity matrix and u an n-dimensional real column vector, uT the

transposed vector.

1. (7 pts) Let V = [µ1, · · · ,µk] a square matrix. Show that

T2 = V Diag(w1, · · · , wk)V T , T3(I, I,u) = V Diag(w1, · · · , wk)Diag(uTµ1, · · · ,uTµk)V T

where Diag(a1, · · · , ak) is the diagonal matrix with ai’s on the diagonal.

2. (2 pts) Now we specialize to n = k. Why is T2 an invertible matrix ?

3. We choose u from a continuous distribution over Rn. Still in the case n = k.

a) (7 pts) Explain how to uniquely recover almost surely the set of µi’s from the

matrix

M = T3(I, I,u)T−1
2

using standard linear algebra methods.

b) (4 pts) How do you then recover the wi’s ?

Solution:

1. Working with components we have on one hand

Tαβ2 =
k∑
i=1

wiµ
α
i µ

β
i
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and on the other hand

(VDiag(w1, · · · , wk)V T )αβ =
n∑

i,j=1

V αiwiδij(V
T )jβ =

n∑
i,j=1

V αiwiδijV
βj

=
n∑
i=1

V αiwiV
βi =

n∑
i=1

µαi wiµ
β
i

Exactly the same calculation applies to:

T3(I, I,u) =
k∑
i=1

wi(u
Tµi)(µi ⊗ µi)

with wi replaced by wi(u
Tµi). It remains to notice that

Diag(w1(uTµ1), · · · , wk(uTµk)) = Diag(w1, · · · , wk)Diag(uTµ1, · · · ,uTµk)

2. When n = k, since µi are linearly independent the matrix V is square and full rank,

so invertible. This also holds for V T . Thus since wi’s are non-zero T2 is also invertible

and

T−1
2 = (V T )−1Diag(

1

w1

, · · · , 1

wk
)V −1

3. a) First note that

M = T3(I, I,u)T−1
2

= VDiag(w1, · · · , wk)Diag(uTµ1, · · · ,uTµk)V T (V −1)TDiag(
1

w1

, · · · , 1

wk
)V −1

= VDiag(uTµ1, · · · ,uTµk)V −1

Thus

MV = VDiag(uTµ1, · · · ,uTµk)

which is equivalent to

Mµi = λiµi, λi = uTµi

When u is taken at random from a continuous distribution the inner products µTi u

are all distinct and non-zero with probability one (indeed the set of u’s satisfying

equalities has measure zero). Therefore we uniquely find (normalized) eigenvectors

µi’s simply by diagonalizing M .

b) Once we have recovered V we find the wi’s from V −1M2(V −1)T .
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Problem 5. Multiple choice questions (20 pts)

Circle the correct answers. No justification required

1. (5 pts) [Several correct answers possible.] Let H = {hθ}θ∈Θ be a hypothesis class such

that VCdim(H) = +∞. Then the set of parameters Θ:

A. is finite.

B. can be countable.

C. can be uncountable.

D. can be finite, countable or uncountable.

2. (5 pts) [Several correct answers possible.] Let (xi, yi) ∈ R × {0, 1} for i ∈ {1, . . . , n}.
Let ŷi(w) = 1/(1 + e−wxi). Define

f : w ∈ R 7→ −
n∑
i=1

[
yi log(ŷi(w)) + (1− yi) log(1− ŷi(w))

]
+ λ|w| ,

where λ > 0. The function f is:

A. convex.

B. differentiable everywhere.

C. subdifferentiable everywhere.

D. Lipschitzian.

3. (5 pts) [Single correct answer.] According to the Hammersley-Clifford theorem the

MRF property for a probability distribution p(x) > 0 implies

p(x) =
1

Z

∏
maximal cliques C

ψC({xi, i ∈ C})

where ψC({xi, i ∈ C}) > 0 and Z is the normalization factor. This decomposition is

unique (up to the absorption of Z into factors):

A. always.

B. never.

C. only when the MRF comes from a Belief Network.

D. only if the graph of the MRF is a tree.
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4. (5 pts) [Single correct answer.] Let wi(ε), i = 1, · · · , K be continuous functions of

ε ∈ [0, 1]. Let also [a1+εa′1, · · · , aK+ε a′K ], [b1+εb′1, · · · ,bK+εb′K ], [c1+ε c′1, · · · , cK+

ε c′K ] be N ×K rank-K matrices for all ε. Consider the tensor

T (ε) =
K∑
i=1

wi(ε) (ai + εa′1)⊗ (bi + εb′1)⊗ (ci + εc′1)

A. The tensor rank always equals K for all ε ∈ [0, 1].

B. The tensor rank equals K for all ε ∈ [0, 1] such that wi(ε) 6= 0, i = 1, · · · , K.

C. When we take a limit limε→0 T (ε) it may happen that the tensor rank of the limit

is K + 1.

D. If we replace the assumption that [c1 + ε c′1, · · · , cK + ε c′K ] is rank K, by the

assumption that these vectors are pairwise independent, then the tensor rank can

never be K whatever we assume for wi(ε), i = 1, · · · , K.

Solutions:

1. B and C. The set Θ parametrizing the hypothesis class must be infinite: if H has

finite cardinality then VCdim(H) ≤ log |H|. In the second graded homework, we studied

the hypothesis class H = {dsin(θπ·)e}θ∈Θ and proved that it has an infinite VC dimension if

Θ = {2n}n∈N (and by extension Θ = R). Therefore B and C are correct.

2. A, C and D. The first sum is the classical cross entropy loss in a logistic regression

problem. We can check that this first sum is convex (nonnegative second derivative) and

Lipschitzian (bounded first derivative). These properties remain when summing the regu-

larization term.

3. A. Because the product is over maximal cliques.

4. B. When wi(ε) 6= 0 for all i and all ε ∈ [0, 1], according to Jennrich’s theorem, since

the three arrays have rank K, and there are K terms in the tensor decomposition, this

decomposition is unique and therefore the rank is K. A is not true when for some i and ε the

wi(ε) vanishes. C is not true because all functions of ε are continuous therefore limε→0 T (ε) =

T (0) and by Jennrich’s theorem the rank is K. D is not true because if wi(ε) 6= 0 for all i

and ε ∈ [0, 1] then the rank is K.
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