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Exercise 1 - Perfect Plasma Power Reactor

a) We must try to minimize the quantity
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which is a function of R0 and a, under the constraints
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The second constraint can be written as
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Replacing in the equation for the first constraint gives:
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Now we use this result in the expression for F , to express the quantity to be minimized
as
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The appearance of Lmax
W in the denominator confirms our intuition that it is beneficial

to operate at the maximum allowable wall loading of 4MW/m2. F is minimized for
a → ∞ and correspondingly R0 → 0. This is limited by the topological constraint
a < R0−b: the plasma minor radius cannot be larger than the torus major radius minus
the thickness of the blanket. So the minimum value of F is reached for a = R0 − b.
Replacing R0 = a+ b in (??), we get a quadratic equation for a :
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We are interested in the positive solution :
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The major radius is then
R0 = a+ b = 3.35m

and the corresponding value of F is

Fmin =
3 · 103 kg/m3
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1
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)
≈ 1.56×103 kg/MW.

This makes the mass utilization factor be ≈ 1.56 times that of a fission reactor.

Exercise 2 - Plasma β limit and diamagnetism

a) The current per unit length, generated by a single charged particle in the Larmor

“circuit” is given by ij = −qj
Ωj

2π
. Now from ∇ × B⃗ = µ0J⃗ → δB = µ0δi therefore

δB = −µ0q2jB

2πmj
δn. This has the same sign for electrons and ions. Therefore the motion

of the charged particles in a magnetic field tends to counteract the field and reduce its
strength.

b) At a given point in space, the number of particles that contribute to the reduction of
the B field is given by the number of particles whose Larmor orbit passes through that
point. This is proportional to the particle density n and the surface swept by each
Larmor orbit: SL = πρ2L ∼ v2⊥. Now v2⊥ is proportional to the plasma (thermal) kinetic
energy and thus to the temperature T . We thus find the proportionality δB ∼ (nT ).

Here we have assumed that v⊥ is equal for all particles at all points in space. In reality
we would have to integrate over the distribution function f(x, v) describing the dis-
tribution of velocity over the particle population: δB(x) = −µ0

B

∫
1
2
mjv

2
⊥f(x, v)d

3v =

−µ0nT
B

.

c) At some point, the diamagnetism will reduce the magnetic field to such an extent that
the Larmor radius becomes larger than the machine size and the particles are no longer
confined.
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Exercise 3 - Violating quasi-neutrality

a) We first set up our simple 1D model of a plasma by considering a plasma located
between x = −d/2 and x = d/2, where d = 1m. It is assumed homogeneous and
infinite in all other directions (y and z).

The 1% violation of quasineutrality means that we will have a surplus of 0.01n ions.
This will result in a charge density (charge per unit volume) ρ = 0.01 e n. First we
write Poisson’s equation in one dimension:

∂E

∂x
=

ρ

ϵ0
(6)

The electric field in the plasma can be found by integrating this differential equation
over the plasma, which is easy since we assumed the violation in quasineutrality - and
hence the charge density - to be uniform.
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Here C is an arbitrary constant of integration. Now note that charged particles at the
exact center of the plasma will see no electric field, since there are equally many other
charged particles on each side. Due to this symmetry we must choose the integration
constant such that E(0) = 0, i.e. C = 0. The electrostatic force per unit volume is

Fe(x) = ρE(x) =
ρ2

ϵ0
x (7)

We can now calculate its absolute value for our plasma parameters.

|F | = (0.01n e)2d

ϵ0
=

(0.01 · 1020m−3)2(1.6× 10−19C)2 · 1.0m
8, 85× 10−12 C2

Nm2

∼ 109N/m3 (8)

b) Compare this now to other forces acting on the plasma:

• Gravity exerts a force per unit volume Fg = ρmg where ρ is the mass density, so

Fg = (mene +mini)ng ≈ ming

≈ 10−27kg · 1020m−3 · 9.8m/s2 ≈ 10−6N/m3

• Pressure is given by p = nT where we have to take care to convert the T into
Joules. For our plasma this is p = nT = 1020m3 · 1.6× 10−19 J/eV · 10× 103 eV =
105N/m2. The force exerted per cubic meter of plasma is p/1m = 105N/m3

These forces are several orders of magnitude smaller than the electric force trying to
maintain quasineutrality!
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