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Abstract. Let G = (V, E) be an undirected weighted graph with |V| = n and |E| = m. Let
k > 1 be an integer. We show that G = (V, E) can be preprocessed in O (kmn'/*) expected time,
constructing a data structure of size O(kn'*'/¥), such that any subsequent distance query can be
answered, approximately, in O (k) time. The approximate distance returned is of stretch at most
2k — 1, that is, the quotient obtained by dividing the estimated distance by the actual distance lies
between 1 and 2k — 1. A 1963 girth conjecture of Erd&s, implies that Q(n'*!/¥) space is needed in the
worst case for any real stretch strictly smaller than 2k 4 1. The space requirement of our algorithm is,
therefore, essentially optimal. The most impressive feature of our data structure is its constant query
time, hence the name “oracle”. Previously, data structures that used only O (n'+!/¥) space had a query
time of Q(n'/%).

Our algorithms are extremely simple and easy to implement efficiently. They also provide faster
constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings
of weighted or unweighted graphs.
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Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Computations
on discrete structures; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms
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1. Introduction

Consider the following interesting problem which is, perhaps, the most natural
formulation of the classical all-pairs shortest paths problem (APSP). We are given
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a description of a large network, such as the Internet, or a large road network, such
as the US road network,! with n nodes and m connections. Each connection has
a length, or weight, associated with it. Usually m <« n?. We are to preprocess
the network, so that subsequent distance queries or shortest path queries could be
answered quickly, on-line.

This formulation seems to capture more accurately the real nature of the all-pairs
shortest paths problem, as in most applications we are not really interested in all
distances, we just want the ability to retrieve them quickly, if needed. For example,
there are probably many pairs of addresses in the US whose distance is of interest
to no one. This is precisely the case with “sublinear” algorithms for static metric
space problems. The input to such a problem is usually a shortest paths metric. A
“sublinear” algorithm attempts to solve such problem while querying only some of
the distances. For more details, see Indyk [1999]. ~

Using an APSP algorithm, we can do the preprocessing in O(mn) time, and
produce a data structure of size O (n?), an n x n matrix holding the distances, and
perhaps a succinct representation of shortest paths between all pairs of vertices of
the graph. Any distance query can then be answered in O (1) time.

There are, however, several serious objections to this solution. First, a prepro-
cessing time of O(mn) may be too long. Second, even if we are willing to wait
that long, the n x n matrix produced may be too large to store efficiently (typically
m < n?, and then this table is much larger than the network itself).

Here, we explore alternative solutions to this problem. We show that better so-
lutions exist, if the network is undirected, and if we are willing to settle for ap-
proximate distances, instead of exact ones. The approximate distances produced
by our algorithms are of a finite stretch. An estimate 8(u, v) to the distance 8(u, v)
from u to v is said to be of stretch ¢ if and only if §(u, v) < S(u, v) <t-56(u,v).
Stretched distances may be acceptable under some scenarios, while unacceptable
in others. Many recent algorithms dealing with finite metric spaces produce only
approximate answers, even if exact distances are used. In particular, this is the
case with the above mentioned sublinear metric space algorithms of Indyk [1999].
Adapting these algorithms to exploit our approximate distance oracles is therefore
a straightforward task.

As stated in the abstract, we describe, for any integer £ > 1, a preprocessing al-
gorithm that runs in O (kmn'/*) time, producing a data structure of size O (kn'*1/%).
Note that the preprocessing time is almost linear in the size of the network, if £
is a large constant, while the size of the data structure produced is almost linear
in the number of nodes. In particular, for dense enough graphs, the data structure
produced is much more compact than the network itself. Subsequent queries can
then be answered, approximately, in O (k) time, that is, constant time. The stretch
of the approximations returned is at most 2k — 1. This result is summarized in the
following theorem:

THEOREM 1.1. Let G = (V, E) be a weighted undirected graph with nonnega-
tive edge weightswith |V | = n, |E| = m.Letk > 1 be aninteger. Then, the graph G

'The US road network is a planar network. To get a more interesting nonplanar network, assume that
the weights attach to the edges represent travel time, and add flight connections between airports.
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can be preprocessed in O(kmn'/*) expected time, producing a data structure of
O (kn'*t1/%) size, such that subsequent distance queries can be answered, approx-
imately, in O(k) time. The stretch of the produced estimates is at most 2k — 1.
Paths no longer than the estimates returned can be produced in constant time
per edge.

For k = 1, we simply get the APSP solution. When £ = 2, we get a preprocessing
time of O(mn'/?), space O(n/?), query time O(1), and stretch at most 3. When
k = |logn], we get a preprocessing time of O(m logn), space O(nlogn), query
time O (logn), and stretch O (log n). Higher values of & do not improve the space
or preprocessing time.

The most interesting feature of our algorithms, we believe, is the fact that for
every fixed k we get a constant query time, hence the name distance oracles.

The space requirements of our oracles are essentially optimal. A 1963 girth
conjecture of Erdés, and others, implies that Q(n'*1/%) bits of storage are needed,
in the worst case, by any oracle, however slow, that gives estimated distances
with stretch strictly less than 2k + 1. This girth conjecture is known to hold for
k =1,2,3,5. Thus, in particular, any oracle giving stretch 2.99 answers must use,
on some graphs, at least $(n?) bits of storage, and any oracle giving stretch 4.99
answers must use, on some graphs, at least Q(n°/?) bits of storage, almost the same
amount of storage used by our stretch 3 oracle.

The oracle model of the shortest paths problem was considered before, at least
implicitly, by Awerbuch etal. [1999], Cohen [1999], Dor et al. [2000], and Matousek
[1996]. (See discussion in the next section.) Our results significantly improve,
however, the previously available results. Most strikingly, using slightly less space,
we reduce the query time from O (kn'/*) to O (k).

Theorem 1.1 is proved in Section 4. Before that, in Section 3, we present a
simplified version of our algorithm for the the special case where the input is the
complete distance matrix of a finite metric space. This version of the algorithm is
faster (O (n?) time) and particularly suited for external memory implementation.

As abyproduct of our oracle construction for graphs, we also get faster algorithms
for constructing sparse spanners and compact tree covers of weighted graphs (see
Section 4.4), and near-optimal distance labelings of graphs (see Section 3.5).

As mentioned in the abstract, all our algorithms are extremely simple and easy
to implement efficiently.

The rest of the article is organized as follows: In the next section, we com-
pare our results with previously available results. In Section 3, we construct ap-
proximate distance oracles for finite metric spaces. The input in this setting is
an n X n matrix giving the distance between any two points in the space. In
Section 4, we adapt this construction to work on the shortest paths metric of a
given input graph. The input this time is the graph, and not an explicit represen-
tation of all the distances in it. Breaking the description of our distance oracles
in this way allows us to separate the metric aspects of our constructions from the
algorithmic graph techniques needed for efficient implementation. In Section 5, we
describe almost matching lower bounds on the space requirements of approximate
distance oracles. We also show that essentially no non-trivial distance oracles are
possible for directed graphs. We end, in Section 6, with some concluding remarks
and open problem:s.
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TABLE 1. ALL AVAILABLE EXACT AND APPROXIMATE DISTANCE ORACLES FOR WEIGHTED
UNDIRECTED GRAPHS

H Stretch ‘ Query Time Space Preproc. Time Reference H
1 o) on? O(mn) [Thorup 1999]
O(m) 0(m) 0 [Thorup 1999]
14¢ o) 0n? O(n®) [Zwick 2002]
2 o) 0(n?) O(m'?n?) | [Cohen and Zwick 2001]
7/3 o(1) on?) Omn'?) [Cohen and Zwick 2001]
o(l) o(n?) 0 n? [Cohen and Zwick 2001]
3 o) Om'Pn + n*/m'7?) O (m*>n) [Dor et al. 2000]
o) on3?) O (mn'/?) This paper
O(n'+7%) O (n'+\ O (mn'+1/%) [Althofer et al. 1993]
2k —1 O (kn'/%) O (kn't1/%y O(mn'/*) [Matousek 1996]
o(k) O (kn't1/k) O (kmn'/*) This paper
2%k +e | O®kn'% O (kn'+V/ky O (kmn'/%) [Cohen 1999]
64k O (kn'/%) O (kn't1/%y O (kmn'/*) [Awerbuch et al. 1999]

2. Comparison with Previous Results

A summary of previously published algorithms for computing exact or approximate
distances in general weighted undirected graphs, cast in our framework, is given
in Table L.

In more detail, the fastest solution for APSP for directed and undirected weighted
graphs with non-negative weights from an arbitrary (comparison based) domain is
to run a single-source shortest paths (SSSP) algorithm from each node. This takes
O (m + n log n) time using the classical algorithm of Dijkstra [1959], implemented
using Fibonacci heaps [Fredman and Tarjan 1987] (see also Cormen et al. [2001,
Chap. 20]). In this article, we are only interested in undirected graphs, and then
an improved running time of O (m) can be obtained when the weights are integer
[Thorup 1999] (or floating point [ Thorup 2000b]). Consequently, the time bound for
APSPis O(mn). The O (m) time bound for SSSP has been incorporated in the other
time bounds below, so an O(-) time bound indicates the presence of logarithmic
factors not stemming from Dijkstra’s algorithm.

For completeness, we note that improved time bounds may be obtained if not all
edges are part of shortest paths [Karger et al. 1993; McGeoch 1995], or if the graph
is dense and all weights are small integers [Zwick 2002; Shoshan and Zwick 1999].

Zwick [2002] has shown that if a stretch of 1 + €, for some fixed € > 0, is
allowed, then APSP can be solved in O (n®) time, where w < 2.376 is the exponent
of matrix multiplication. For stretches 2, 7/3, and 3, Cohen and Cohen and Zwick
[2001] have shown that APSP can be solved in time O(m'/*n%?), O(n’/3), and
O (n?), respectively.
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The above O (n?) time bound is clearly near-optimal, if we insist on producing a
complete table of distances. It is interesting to note, however, that stretch 3 is also
the smallest stretch for which one can hope to produce distance oracles that use
o(n?) space for all graphs. Indeed, Dor et al. [2000] describe a stretch 3 oracle that
uses only O (m'/3n+n%/m'/3) space, which is always O (n°/3), has a preprocessing
time of O(m?*/3n), and O(1) query time. The preprocessing time of this algorithm
is 0(n?) if m = o(n’/?). The ideas of Dor et al. [2000] do not extend, however, to
larger stretches.

Our new stretch 3 oracle (Theorem 1.1 with & = 2) has a preprocessing time
of O(mn'/?), optimal space O(n*/?), and O(1) query time. The new preprocessing
time is faster than all the other preprocessing times when m = O(n*/?), in which
case it achieves a preprocessing time of O (n?).

For general stretch, Awerbuch et al. [1999] gave, for every integer £k > 1, a
stretch 64k oracle with space O (kn'*!/%), expected preprocessing time O (mn'/*),
and O (kn'/*) query time. Cohen [1999] significantly improved this result, reducing
the stretch to 2k 4 ¢ while leaving the other parameters unchanged. The stretch was
further improved to 2k — 1, using entirely different techniques, by Matousek [1996].

The main result of this article is that we improve the query time time from
O(kn'/*) to O (k). We also get slightly improved space and preprocessing time.
More precisely, we present a stretch 2k — 1 oracle with space O (kn'*1/%), expected
preprocessing time O (mn'/¥), and O (k) query time.

Most work on distance oracles is closely related to spanners. A t-spanner of
a weighted undirected graph G is a subgraph H of G such that the distances
in H are stretch ¢ estimates of the distances in G (see Peleg and Schiffer [1989]).
Clearly, a stretch ¢ oracle, like ours, capable of producing paths witnessing the
estimated distances, must explicitly or implicitly contain a z-spanner. Hence, ¢-
spanners provide a clean mathematical view of compact distance oracles. Indeed,
all of the above mentioned results providing o(n?) space bounds [Awerbuch et al.
1999; Cohen 1999; Dor et al. 2000] can be viewed as producing spanners.

The sizes of spanners are closely related to the girth of a graph, which is the
size of its smallest simple cycle. Clearly, the girth of a graph is at least ¢ 4 2 if
and only if no proper subgraph of it is a f-spanner. A classical result in extremal
graph theory (see discussion and references in Section 5) states that an n-vertex
graph with at least n'+1/% edges is of girth at most 2k. As pointed out by Althofer
et al. [1993], this implies that every weighted undirected graph on n vertices has a
(2k — 1)-spanner with O (n'*!/%) edges. Such a spanner can be constructed using
an algorithm similar to Kruskal’s algorithm (see Kruskal [1956] or Cormen et al.
[2001, Chap. 23]) for constructing minimum spanning trees: Building the spanner
from scratch, consider the edges of the graph in a nondecreasing order of weight,
adding each edge to the spanner if its endpoints are not already connected, in the
spanner, by a path using at most 2k — 1 edges. At any stage, the spanneris a (2k —1)-
spanner of the edges already considered, and its unweighted girth is at least 2k + 1,
so it has only O(n'*!/*) edges. The fastest implementation of this algorithm that
we are aware of runs in O (mn'*1/%) time. Our preprocessing algorithm constructs
a similar spanner much faster. The expected construction time is now O (kmn'/¥),
instead of O (mn'*1/%). Very recently, Baswana and Sen Baswana and Sen [2003]
found a randomized linear time algorithm for constructing such spanners, but their
construction does not support fast distance queries.
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It is conjectured by many (e.g., Erdés [1964, eq. 7 on p. 33], Bondy and
Simonovits [1974, remark 1 on p. 98], and Bollobas [1978, item 13 on p. 164)] that
there are n-vertex graphs with Q(n'+1/%) edges that are of girth 2k 4-2. This conjec-
ture is proved for k = 1, 2, 3, 5 (see Section 5). Since these graphs have no proper
t-spanners, for t < 2k + 1, the conjecture would imply that the above mentioned
upper bounds are best possible. The conjecture also implies that (n'*!/¥) bits are
needed, in the worst case, by any oracle giving estimates of stretch smaller than
2k + 1, even if it not required to construct appropriate paths. This lower-bound is
proved by Matousek [1996], but for completeness, we repeat the simple argument
in Section 5.

Interestingly, the previous best distance oracle of Matousek [1996] (see also
Chapter 15 of Matousek [2002]) does not provide a spanner. Generalizing a tech-
nique of Bourgain [1985], Matousek provides a randomized low-distortion embed-
ding of a metric into LY. Using d = O (kn'/* log n) dimensions, with high proba-
bility, his distances become shorter by at most a factor 2k — 1 (so multiplying them
by 2k — 1, he gets stretch 2k — 1). When applied to a graph, he only needs O (m) time
to compute a given coordinate for all vertices, and his distance estimate is just the
maximal difference over all coordinates. Thus, with space O(nd) = O (kn'+'/%),
preprocessing time O(md) = O (kmn'/%), and query time O(d) = O(kn'/*), he
gets stretch 2k — 1 with high probability. For comparison, we note that embeddings
into Euclidian space or tree metrics (see Bourgain [1985], Linial et al. [1995], Bartal
[1999], and Fakcharoenphol et al. [2003]), have stretch at least Q2(log n).

Some distance oracles were constructed for special classes of graphs. Exact
linear-space distance oracles for graphs of small treewidth were obtained by
Chaudhuri and Zaroliagis [2000]. For planar graphs, or graphs with bounded genus,
stretch (1 4 ¢) distance oracles are constructed in near-linear time and space by
Thorup [2001] and Klein [2002], providing distance estimates in constant time. For
Euclidean graphs, the same bounds were obtained by Gudmundson et al. [2002].

Finally, we mention that there has been some work on approximating distances,
in unweighted undirected graphs, with additive rather than multiplicative errors
(see Aingworth et al. [1999] and Dor et al. [2000]), and on approximating dis-
tances with multiplicative and additive errors (see Elkin and Peleg [2004] and
Elkin [2001]).

2.1. TECHNIQUES. Our construction technique is most closely related to the
techniques employed by Awerbuch et al. [1999] and Cohen [1999]. A common fea-
ture of these previously used techniques is the construction of a family of balls with
the property that each vertex is contained in at most of O (kn'/¥) balls. The returned
distance between two vertices is then the smallest diameter of a ball containing them
both. To find this ball, they inspect each of the O (kn'/¥) balls containing the first ver-
tex, and check, in constant time per ball, whether it also contains the second. Though
conceptually simple, the use of balls leads to several technical complications. One
of them, for example, is an added logarithmic factor paid for the construction of balls
with exponentially increasing diameters. The main drawback of this approach, how-
ever, is the lack of a quick way of finding the smallest diameter ball containing two
given vertices.

In our construction, we relax the rigid notion of balls with limited diameter,
and use instead collections of induced trees that form a free cover of the graph.
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algorithm preprog(V,J)
Ag—V ; A <0
fori—1tok—1

let A; contain each element of A;_1,
independently, with probability n-1/k,

for every v € V

fori—0tok—1,
let §(A;,v) — min{ §(w,v) | w € A;},
and p;(v) € A; be nearest to v, i.e. §(pi(v),v) = §(A4,v).

0(Ag,v) — 0
let B(v) — UM {w € A; — Aiy1 | §(w,v) < 8(Aig1,v)}

FIG. 1. Preprocessing a finite metric space.

algorithm distg(u,v)
w—u;i—0
while w ¢ B(v)
i—1i+1
(v, v) — (v, u)
w — p;(u)

return 6(w,u) + §(w, v)

FIG. 2. Answering a distance query.

Each vertex is contained in only in a small number of trees, and for any pair of
vertices, there is a tree in the cover containing a small-stretch path between them.
Furthermore, we can identify the appropriate tree in constant time.

3. Approximate Distance Oracles for Metric Spaces
We begin by presenting approximate distance oracles for general metric spaces.

THEOREM 3.1. Let (V, §) be a finite metric space represented as an n x n dis-
tance matrix. Let k > 1 be an integer. The metric space (V, 8) can be preprocessed
in O(n®) expected time, producing a data structure of O (kn'*'/*) size, such that
subsequent distance queries can be answered, approximately, in O (k) time. The
stretch of the produced estimates is at most 2k — 1.

Our preprocessing and query answering algorithms are given, respectively, in
Figure 1 and Figure 2. Both are extremely simple and easy to implement. The
algorithms and their implementation details are discussed in more detail in the
next two subsections. The following two sections are then devoted to the analysis
of the algorithms, showing that they satisfy the requirements of Theorem 3.1.
In Section 3.5, we show that our approximate distance oracles also produce, as
a byproduct, almost optimal distance labels. In Section 3.6, we show that our
randomized preprocessing algorithm may be derandomized with only a small loss
of efficiency. Finally, in the last two sections, we consider more practical issues. In
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Section 3.7, we mention some hash functions that may be used by our algorithms.
In Section 3.8, we note that our preprocessing algorithm is an efficient external
memory algorithm.

3.1. PREPROCESSING A FINITE METRIC SPACE. A description of the prepro-
cessing algorithm prepro,(V, §) is given in Figure 1. The missing implementation
details are explained below. The algorithm receives an n x n matrix representing a
finite metric 6(u, v) on a set V containing n points referred to as vertices. (In the
next section, we consider the case in which the input to the preprocessing algorithm
is not an explicit n x n matrix that describes the metric on V, but rather a weighted
undirected graph G = (V, E) that induces a shortest paths metric on V'.)

The preprocessing algorithm starts by constructing a non-increasing sequence
of sets Ay 2 Ay} D --- D Ay_; by a process of repeated sampling. The sequence
begins with Ag = V. Each set A;, where 1 < i < k, is then obtained by taking,
roughly, an n~/* fraction of the elements of A;_;. More precisely, each element
of A;_; is placed in A;, independently, with probability n~!/*. Finally, A; = ¢.
The expected size of A;, for 0 < i <k, is clearly n'=i/% Sometimes we will refer
to the vertices of A; as i-centers.

In the following, for simplicity, we assume that A;_; # @. This is the case with
extremely high probability, and if not, we can just rerun the algorithm. Now, for
each vertex v and index i = 0, ...,k — 1, the algorithm computes 6(A;, v), the
smallest distance from an i-center to v. It also lets p;(v) € A; be nearest possible
to v, that is, §(p;(v),v) = 8(A;,v). Note that Ay = V, so §(Ag,v) = 0, and
po(v) = v, for every v € V. Next, the algorithm sets §(Ay, v) < 6(4,v) = oo,
with p;(v) undefined.

Finally, for each vertex v € V, the algorithm computes a bunch B(v) € V
as follows. A vertex w € A; — A;4+; is put in the bunch B(v) if and only if
d(w,v) < 8(A;j11, V), thatis, if w is strictly closer to v than all the vertices of A; 1.
Note that as §(A;, v) = oo, we get that A;_; € B(v), for every v € V. We show
in Section 3.3, that the expected size of the bunch B(v), for every v € V, is at
most kn'/k,

A schematic description of the construction of the bunch B(v), for some v € V,
is given in Figure 3. It is assumed there that £ = 3. The black vertices are the
vertices of A,, the grey ones are the vertices of A; — A,, while the white ones are
those of A9 — A;. The bunch B(v) is composed of the the vertices pointed to by an
arrow from v. Also shown in the figure are p,(v), the vertex of A; closestto v, and
p2(v), the vertex of A, closest to v.

This almost completes the operation of the preprocessing algorithm. For each
bunch B(v), the preprocessing algorithm constructs a hash table (see Carter and
Wegman [1979], or Cormen et al. [2001, Chap. 11]) of size O(|B(v)|) that holds,
forevery w € B(v), the distance §(w, v). Using this hash table it can be checked for
every w € V, in expected O(1) time, whether w € B(v) and if so what is §(w, v).
Alternatively, it constructs a 2-level hash table (see Fredman et al. [1984]), again
of size O(|B(v)|), using which it is possible to check whether w € B(v), and return
S(w, v) if so, in O(1) worst case time.

The data structure constructed by the preprocessing algorithm stores for each
vertex v € V,

—for0 <i < k—1,the witness p;(v) and the corresponding distance 5(p;(v), v) =
3(A;, v).
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FIG. 3. The bunches constructed by the preprocessing algorithm.

—the (2-level) hash table for the bunch B(v), holding (v, w), for every w € B(v).

The total size of the data structure is O(kn + ) _, |B(v)]). In Section 3.3, we
show that the expected size of B(v), for every v € V, is at most kn'/*. The total
expected size of the data structure is therefore O (kn'*!/¥). The time complexity of
prepro,(V, §) is clearly O (n?).

3.2. ANSWERING A DISTANCE QUERY. A description of the very simple query
answering algorithm dist; (u, v) is given in Figure 2. It uses only four variables: u
and v, the two vertices whose distance is to be estimated, a third vertex w and an
index i. The algorithm repeatedly swaps u and v. This clearly does not affect their
distance. Initially, w = u = po(u) and i = 0. If w € B(v), a condition checked by
accessing the (2-level) hash table of B(v), we are done. Otherwise, the algorithm
increments i, swaps u and v, and lets w < p;(u#) € A;. It continues in this way
until w € B(v). This condition is guaranteed to hold when i = k — 1, if not before,
asthenw € Ay_jand Ay,_; € B(v) foreveryv € V.

When w € B(v), the algorithm returns §(w, u) + §(w, v) as an upper bound on
8(u, v). The distance §(w, u) = 8(p;(u), u) is read directly from the data structure
constructed during the preprocessing stage. The distance §(w,v) = §(v,w) is
returned by the (2-level) hash table of B(v) together with the answer to the query
w € B(v).

The complexity of dist(u, v) is clearly O (k). The most time-consuming op-
erations are the at most k accesses to the hash tables to test whether w € B(v),
returning §(w, v) if so. The stretch of the estimate produced by dist,(u, v) is ana-
lyzed in Section 3.4.

3.3. ANALYSIS OF THE PREPROCESSING ALGORITHM. We have shown already,
in Section 3.1, that the running time of the preprocessing algorithm is O (n?) and
that the size of the data structure produced by it is O(kn + Y ., |B(v)]). All
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that remains, therefore, is to analyze the expected sizes of the bunches B(v), for
veV.

LEMMA 3.2. For everyv € V, the expected size of the bunch B(v) is at most
kn'/k.

PROOF. Letv € V. We prove the lemma by showing, forevery 0 <i <k —1,
that the expected size of B(v) N A; is at most n'/ k. Fori = k — 1, the statement is
trivial as E[|As_;|] = n'/*. Assume, therefore, thati < k — 1.

We show that the expected size of B(v) N A;, for i < k — 1, is stochasti-
cally dominated by a geometric random variable with parameter p = n~!/%,
Let wi,ws,...,w; be the elements of A;, arranged in a nondecreasing or-
der of distance from v. If w; € B(v), then §(w;,v) < 6(A;41,v), and thus
Wi, Wo, oo, Wi & Ajy1. Note that p =Prlw e Ai; | w € A] = n_l/k,
fori < k — 1. Thus, Pr[w; € B(v)] < (1 — p)/~! and the expected size of
B(v) N A; is at most

£ ¢
ZPr[wj € B(v)] < Z(l_p)j—l < pt = alk,
j=1

j=1
This completes the proof of the lemma. [

As described, the preprocessing algorithm has, therefore, a worst-case running
time of O(n?) and the data structure produced has an expected size of O (kn'*1/%).
We can get a data structure of size O(kn'*!/%) by rerunning the algorithm until
the data structure produced is small enough. By Markov’s inequality, the expected
number of repetitions required is constant, so the expected running time of this
version of the algorithm is still O (n?), as stated in Theorem 3.1.

3.4. ANALYSIS OF THE QUERY ANSWERING ALGORITHM. We next obtain an
upper bound of 2k — 1 on the stretch of the estimated distance returned by disty (i, v).

LEMMA 3.3. disty(u,v) < 2k — 1)é(u, v).

PROOF. Clearly, the swapping of u and v does not change their distance A =
8(u, v). Before the while loop starts, w = u so §(w, u) = 0. We want to show
that each iteration increases §(w, u) by at most A. Since A;_; € B(v), there are
at most k — 1 iterations, so we will then end up with §(w, u) < (k — 1)A. Now,
Sw,v) < sw,u)+8(u,v) < (k— 1A+ A < kA, so the estimated distance
returned is at most (2k — 1)A.

All that remains, therefore, is to show that §(w, u) increases, in each iteration,
by at most A = §(u, v). Let u;, v; and w; be the values of the variables u, v and w
assigned with a given value of i. Then, v and uq are the original values of # and v,
and then wy = ug, so §(wy, ug) = 0.

We want to show that §(w;, u;) < 8(w;_1, u;—1) + A if the ith iteration passes
the test of the while-loop. Then, w;_; & B(v;_1),s0 8(W;_1,vi_1) = 6(A;, vi_1) =
8(pi(vi—1), vi—1). However, v,y = u; and w; = p;(u;), so we get

Swi,u;) = 8(pi(ui), u;) = 8(pi(vi—1),vi—1) < dw;_1,vi—1)
< SWi—i, ui—1) + A

as required. [
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This completes the proof of Theorem 3.1.

3.5. DISTANCE LABELS. Let G = (V, E) be a weighted undirected graph on
n-vertices with integer edge weights. Let A be the diameter of G, and let k > 1 be
an integer. Peleg [2000b] describes a way of assigning each vertex v € V of the
graph G = (V, E) an O (kn'/*log nlog A)-bit label, denoted label(v), such that
for any u, v € V, a stretch 8k estimate of the distance §(u, v) may be obtained just
by looking at label(u) and label(v). Computing this estimate, in Peleg’s scheme,
may take Q(n'/*) time.

We obtain the following improvement to Peleg’s result:

THEOREM 3.4. Let (V, 8) be a metric space on n points with integral distances
with diameter A. Let 1 < k < logn be an integer. Then, it is possible to assign to
each pointv € V an O(n'/* loglfl/k nlog(nA))-bit label, denoted label(v), such
given label(u) and label(v), for any two points u,v € V, it is possible to compute,
in O(k) time, an approximation to the distance §(u, v) with a stretch of at most
2k — 1.

As would follow from the results of Section 5, this result is essentially optimal.
Lower bounds on the size of labels in various kinds of labeling schemes are also
obtained by Gavoille et al. [2001].

In our labeling scheme, label(v), for each v € V, is composed of the the
witnesses p;(v) and the distances §(A;,v), for 1 < i < k, as well as the (2-
level) hash table that holds, for every w € B(v), the distance §(w, v). It is easy
check that all the information needed by the query answering algorithm dist; (u, v)
is contained in label(u) or in label(v). Thus, a stretch 2k — 1 estimate of the
distance 6(u, v) may be obtained in O(k) time just by examining label(u) and
label(v).

It follows from Lemma 3.2 that the expected size of label(v), for any v € V, is
O (kn'/*) words, where each word holds either a name of a vertex or a distance. As
there are n vertices in the graph, and as the diameter of the graph is A, each word
contains at most log(nA) bits. We are interested, here, however, in the maximum
size of a label, not its expected size.

It is not difficult to show, using arguments similar to arguments used below, that
with high probability, the size of every bunch B(v), for v € V,is O(n'/*logn).
This yields, therefore, a distance labeling scheme with O(n'/*log nlog(nA))-bit
labels. A factor of about log!/* n may be gained by slightly changing the sampling
probability used by the preprocessing algorithm:

LEMMA 3.5. Ifthe sampling probability used by prepro,(V, &) is changed from
n~Y* to (n/Inn)~V*, then, with high probability, the size of every bunch B(v), for
veV,isOmn'/* logl_l/k n).

PROOF. Let p = (n/Inn)~'/* be the sampling probability. As in the proof
of Lemma 3.2 that the size of bunch B(v), for v € V, is stochastically dom-
inated by the sum Zf‘;& X; of k random variables, where X;_; is binomially
distributed with parameters n and p*~!, and X;, for 0 < i < k — 2, is a ge-
ometric random variable with parameter p. (Here X;, for 0 < i < k — 1,
bounds the size of B(v) N A;). Furthermore, these k random variables are
independent.
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Chernoff’s bounds (see Motwani and Raghavan [1995, Chap. 4]) say that if X is
a binomial random variable with E[X ]| = u, then

exp(8) 1"
(1+ 5)1+8] ’
Pr[X < (1—8)u] < exp(—us?/2).

Itis easy to see that E[X;_;] = np*=1 = pl/k In'="*p. Using the first Chernoff
inequality, with § = 3 and . = n'/¥In'="* 5, we get that

Pr{X > +8Hu] < [

Pk i =17k

3
PHX, > 4n" In'" 1 p] < C%)

) 1
< exp(—2nl/" In'~/* n)<exp(—2lnn)= —-
n
Next, a moment reflection shows that, as Xy, ..., X;_; are independent geometric

random variables, for every integer s we have Pr[ Zf:_g X, >s =Pr[B(s, p) <
k], where B(s, p) is a binomial random variable with parameters s and p. Thus,

k—2
Pr|:ZXi > 16n1/k1n1_1/kn:| = Pr[B(16n"*In'"Y* n, (n/Inn)~"*) < k] .
i=0

Note that & = E[B(16n"*In'="*n, (n/Inn)""/*)] = 16Inn. As k < logn, we
get that k£ < /2, and using the second Chernoff inequality, with § = 1/2, we get
that

k=2
Pr |:2Xi > 16n"/*In!~1/k nj| < exp(—u/8) = n2.
i=0

The probability that at least one bunch B(v) is of size greater than 20n'/* In'~!/% 5
is at most n(n=2 +n2) = 2/n « 1, for n large enough. [

This completes the proof of Theorem 3.4. As mentioned, this result is essentially
optimal, as would follow from the results of Section 5. The integrality assumption
can be easily removed if we are willing to settle for stretch 2k — 1 + €, for some
arbitrarily small € > 0. Each label is then of size O(n!/ k loglfl/ Kn log(n/€))-bits.

3.6. DERANDOMIZATION. The preprocessing algorithm prepro(V, §) given
in Section 3.1 is randomized. It not difficult, however, to derandomize it, with
only a small loss in efficiency. Randomization is only used by prepro(V, §) in
the selection of the samples Ag 2 Ay D --- D Ay, and in the construction of the
(2-level) hash tables.

A deterministic way of constructing a sequence of samples with all the desired
properties is given in Figure 4. The sets Ag, Ay, . . . are constructed one by one. The
set Ap is simply V. Suppose A;_, for some 1 < i < k was already constructed.
The algorithm lets N;(v), for every v € V, be the set of the n!/* In'~V* n vertices
of A;_; that are closest to v. Ties are broken arbitrarily. Then, the algorithm chooses
aset A; of size at most n'~"/*(In n 4 1)"/* that hits all the neighborhoods N; (v), for
v € V. To construct the set A;, the algorithm relies on the following well known
lemma, which is a slight modification of Theorem 2.2 of Alon and Spencer [1992,

p. 6]:
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s —nt/k(nn+1)1-1/k
Ag —V ; A 0
fori —1ltok—1

for every v € V,
let N;(v) contain the s vertices of A;_1 closest to v.

let A; be a subset of A;_1 of size at most @(ln n+1)

that hits N;(v), for every v € V.

FiG. 4. Deterministic construction of the samples.

LEMMA 3.6. Let Ny,...,N, € U be a collection of sets with |U| = u and
[N;| > s,for 1 <i < n.Then,aset A of size at most %(ln §+ 1) < %(lnn—l— 1) such
that N;NA # @,for 1 <i < n,canbefound, deterministically,in O+ _;_, IN;|)
time.

The set A, whose existence is claimed in Lemma 3.6, is obtained by repeatedly
adding to A elements of U that hit as many unhit sets as possible, until only
sets are unhit. The construction of A is then completed by adding an element from
each one of the unhit sets. For more details, see Alon and Spencer [1992, p. 6].
(Lemma 3.6 is slightly more general than Theorem 2.2 of Alon and Spencer [1992]
that assumes u = n.)

We now claim:

THEOREM 3.7. If the random sampling used by prepro,(V, §) is replaced by
the deterministic sampling procedure described in Figure 4, then the size of each
bunch B(v), forv € V, is at most kn'/*(Inn + 1)!=1/%.

PROOF. Letv € V. Note that B(v) = Uf;(} B;(v), where
Bi(v)={w e A —Aip1 | dw,v) <d(Air1, )},

for 1 <i < k. We claim that |B;(v)| <s = n" (Inn+ 1)!'"V* for0 <i <k —1,
otherwise N;(v) € B;(v), and by the construction of A; |, we have A; 1 N B;(v) #
4, a contradiction. Finally, B;_1(v) = Aj_1, and it is easy to show by induction
that |[Ay_| < n'*(Inn + D"V O

We have thus lost only a factor of about log' =% n with respect to the expected
bunch size of the randomized algorithm, and only a factor of about k with respect
to the maximum bunch size of the randomized algorithm with the slightly modified
sampling probability.

The preprocessing algorithm prepro.(V, E) also has to construct a 2-level hash
table for each bunch B(v), where v € V. (This step is not explicit in the description
of the algorithm given in Figure 1.) The linear-time algorithm given by Fredman
et al. [1984] for the construction of such tables is randomized. Their algorithm is
derandomized, however, by Alon and Naor [1996]. To construct a perfect hash table
over ¢ = O(n'/*) elements from a universe of size n, without assuming that & is
constant, they use O(g log g logn) = O(n'/*) time. Hence, constructing the hash
table for all B(v) takes O (n'*'/%) time, so this derandomization does not affect the
overall running time of O (n?) for the preprocessing algorithm.
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3.7. FAST HASHING. The query-answering algorithm has a worst-case running
time of O(k), when 2-level hash tables are used. The hash functions used in the
construction of these 2-level hash tables should be chosen from a universal family of
hash functions (see Carter and Wegman [1979]). The evaluation of many standard
universal hash functions is quite slow. We mention, therefore, a recently suggested
universal family of hash functions whose evaluation is about 10 times faster than
the evaluation of hash functions, commonly mentioned in text books, that are based
on arithmetic modulo a prime number.

Suppose that each vertex x is represented by a standard 32-bit integer. Leta > 0
be arandom odd 32-bit integer. Define h,(x) = (axx) > (32—4£), for some £ < 32.
The above should be understood as C-notation, with 3> denoting right shift and a xx
denoting multiplication modulo 2°2. The result is then an £-bit integer. The family
{hy(x) | a odd} is then a universal family, in the sense that Pr{/,(x) = h,(y)] < 27¢,
for every x # y. The universality of this multiplicative hashing scheme is pointed
out by Dietzfelbinger et al. [1997]. Its efficiency is demonstrated by Dietzfelbinger
and Hiine [1996] and by Thorup [2000a].

3.8. EXTERNAL MEMORY. An interesting application of the above technique is
the following: Given a huge n x n distance matrix that resides in external memory,
or on fape, we can efficiently produce a compressed approximate version of it that
could fit in a much smaller, but much faster, internal memory. We assume here that
it is possible to pick a not too large integer k£ such that the internal memory can
accommodate a data structure of size O (kn'T1/%).

A random access to an entry in the original external memory matrix is typically
in the order of 10,000 times slower than an internal memory access. (See Vitter
[2001] for more on external memory issues). Thus, our simple O (k) time distance
query algorithm, working in internal memory, is expected to be significantly faster
than a single access to the external memory.

Assuming that the distance matrix is stored in row (or column) order, our pre-
processing can take advantage of the fact that one sequential read of the whole
external memory matrix is comparatively cheap. First, we generate the sets A;. As
we assume that the internal memory is of size O (kn'*!/%), the sets A; can be easily
stored in the internal memory. We then read the rows of the matrix, one by one.
Given the row corresponding to a vertex v, we first compute the distances 6(A;, v)
and the witnesses p;(v), for 0 < i < k — 1, and then construct the bunch B(v). The
bunches are just accumulated in internal memory, which we have assumed is large
enough to accommodate all of them.

4. Approximate Distance Oracles for Graphs

In the previous section, we assumed that metric 6(u, v) is given to us explicitly. Here,
we consider the more realistic situation in which the metric that we are supposed
to process is the shortest paths metric of a weighted undirected graph. The graph,
and not the metric, is given to us this time.

We can, of course, begin by solving the APSP problem for the input graph
and then use the algorithms of the previous section to preprocess the metric ob-
tained. This solution is wasteful, however, both in terms of running time and in
terms of space. It is much more efficient to directly process the graph that induces
the metric.
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algorithm preproy(V, E)

Ao — V; A «— 0
fori—1tok—1
let A; contain each element of A;_q,
independently, with probability n~=1/k.
§(Ag,v) «—
for i «— k — 1 downto 0
for every v € V,
compute §(A;,v) and find p;(v) € A;
such that 6(p;(v),v) = §(4;,v).
if 8(A;i,v) = 6(Ait1,v) then p;(v) — piy1(v) )
for every w € A; — Aiy1,
grow a shortest path tree T'(w) from w
spanning C(w) = {v € V | §(w,v) < 6(Ait1,v) }.
for every v € V,
let B(v) — {weV]|veCw)}.

FIG. 5. Preprocessing a graph.

The new preprocessing algorithm is described next, in Section 4.1. A modifica-
tion to the query answering algorithm that allows it to return paths, and not just
approximate distances, is then described in Section 4.2. The analysis of the modified
preprocessing algorithm is given in Section 4.3. Finally, in Section 4.4, we show
that our preprocessing algorithm is also a very efficient algorithm for constructing
sparse spanners and compact tree covers.

4.1. PREPROCESSING A GRAPH. A description of the preprocessing algorithm
prepro,(V, E)is given in Figure 5. It receives as input a weighted undirected graph
G = (V, E). The preprocessing algorithm is similar to the preprocessing algorithm
given in Figure 1. In particular, the sets A; and the bunches B(v) would be exactly
the same. The implementation details, this time, are less trivial, as distances §(u, v)
have to be computed, instead of just being read from an input matrix. This is why
we introduce the new sets C(-) before computing bunches B(-).

The algorithm starts again by constructing the samples Ag 2 A} 2 --- D
Ap_1 D Ay, where Ag =V and A, = . As before, elements of A; will be referred
to as i-centers.

The operation of the algorithm is then composed of k iterations. The i -th iteration
starts by computing the distances §(A;, v), for every v € V, where §(A;,v) =
min{§(w, v) | w € A;}. Thisisdone by addingto G = (V, E) anew source vertex s,
and edges (s, w) of weight 0, forevery w € A;, and by computing the distances from
the new source s to all the other vertices of the graph. The distances are found in
O (m) time by running the single-source shortest paths algorithm of Thorup [2000b].
It is easy to check that for every v € V, the distance from s to v in the new graph is
indeed §(A;, v). Furthermore, the shortest paths tree constructed by the algorithm
supplies, for every v € V, a witness p;(v) € A; such that §(p;(v),v) = §(A;, v).
Indeed, if v is in the branch of the shortest paths tree that starts with the edge
(s,w), where w € A;, then 6(A;,v) = 6(w, v) and we can set p;(v) <— w. All the
witnesses are easily found, therefore, in O (m) time.
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The minimum distance §(A;, v) may be attained by several vertices of A;. The
preprocessing algorithm of the previous section lets p;(v) be an arbitrary vertex
of A; satisfying 6(p;(v), v) = 8(A;, v). The new statement (*) trivially preserves
this property. In addition, it also ensures that the following property, that plays a
crucial role in the construction of small-stretch paths, as described in Section 4.2,
also holds:

LEMMA 4.1. Foranyv € V and(0Q <i <k — 1, we have p;(v) € B(v).

PROOF. We prove the claim by induction on i from above. The claim trivially
holds wheni = k — 1, as then py_1(v) € Ay_1 € B(v), for every v € V. Suppose
therefore that i < k& — 1, and that p;;(v) € B(v). If the test of (¥) fails, we get
pi(v) = pir1(v) € B(v). Otherwise, §(p;(v), v) = 6(A;,v) < 8(A;11, V), and then
pi(v) € B(v) by definition of B(v). [

Next, the algorithm constructs a cluster C(w) around each i-center w € A; —
A;+1. The cluster C(w) is composed of all the vertices that are closer to w than to
any (i — 1)-center. In other words, C(w) = {v € V | 6(w,v) < §(A;+1, V) }. Note
that for every w € A;_; we have C(w) =V, as 6(Ax, v) = oo, forevery v € V.

It is easy to see that the bunches of the previous section and the clusters of this
section are “inverses” of each other, in that w € B(v) if and only if v € C(w) for
any v, w € V. Thus, the bunches constructed by the final loop of the preprocessing
algorithm are identical to the bunches that would have been constructed by the
preprocessing algorithm of the previous section.

The construction of clusters is reminiscent of the construction of Voronoi dia-
grams. Animportant difference here, however, is that the cluster C (w) of ani-center
w € A; — A;1 contains all vertices whose distance to w is smaller than their dis-
tance to all (i 4+ 1)-centers, and not to all i-centers, as the definition of Voronoi
diagrams would suggest. In particular, the clusters at a particular iteration are not
necessarily disjoint. A schematic description of the clustering construction process
is given in Figure 6. The filled vertices there are (i 4+ 1)-centers. The two large
unfilled vertices are i-centers and the two polygons depict the clusters associated
with them. (In Figure 6, it is implicitly assumed that the distances between the
vertices are Euclidean. This is done for illustration purposes only. Our algorithms
work on general weighted graphs).

Each cluster C(w) is computed by running a slightly modified version of Tho-
rup’s SSSP algorithm from w [Thorup 1999]. Since this algorithm is rather compli-
cated, we describe instead a modified version of Dijkstra’s classical SSSP algorithm
[Dijkstra 1959] (see also Cormen et al. [2001, Chap. 24]). The changes to Thorup’s
algorithm are very similar.

4.1.1. Modifying Dijkstra’s Algorithm. Dijkstra’s algorithm with source w
maintains for each vertex v an upper bound d(v) on the distance §(w, v). If d(v) has
not been assigned yet, it is interpreted as infinite. Initially, we just set d(w) = 0,
and we have no visited vertices. At each iteration, we select an unvisited vertex u
with the smallest finite d(u), visit it, and relax all its edges, that is, for each incident
edge (u,v) € E, we set d(v) < min{d(v), d(u) + £(u, v)}. We continue in this
way until no unvisited vertex v has a finite d(v).

Our simple modification of Dijkstra’s algorithm is that we relax the edge (u, v)
only if d(u) + €(u,v) < 6(A;+1,Vv). Note that §(A;4+1, v) was computed in the
previous iteration so the test takes constant time.
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FIG. 6. The clusters constructed by the preprocessing algorithm.

LEMMA 4.2. The modified Dijkstra’s algorithm visits exactly the vertices
of C(w), assigning each the correct distance from w.

PROOF. The proof is similar to correctness proof of Dijkstra’s original algo-
rithm. Suppose w € A; — A,+1. The essential new point is the following easily
verified claim: if v € C(w) and v’ lies on a shortest path from w to v, then
Sw,v) < 8(A;j41,Vv"), so v € C(w). By definition, v € C(w) if and only if
S(w,v) < 8(Aiy1, V), but then §(w,v') = d(w,v) — 8(v,v') < 8(A;11,Vv) —
S(v,v) < 8(A;11, V"), as desired.

Note that we only relax an edge (u, v) if d(u) + £(u,v) < §(A;+1,Vv). Conse-
quently, a vertex v ¢ C(w) is never assigned a finite distance, and hence it is nev-
er visited.

We now show that all vertices visited are assigned correct distances from w. The
proof is by induction. Suppose that v € C(w) is about to be visited and that all
previously visited vertices were assigned the correct distance. Let p be a shortest
path from w to v. Let u’ be the last visited vertex on this path, and let v’ be the next
vertex on the path. By the above claim, §(w, v') < 8(A;41, v'). Moreover, by the
induction hypothesis, when u’ was visited d(u’) = 8(w, u’), and then §(w, v') =
Sw,u’) + Lu',v) = dw') + £(u’,v’). Hence, du') + L', v') < 8(A;11,V),
so the edge (u',v') was relaxed, setting d(v') <« 8(u,v’). As v is about to be
visited before v/, we must have d(v) < d(v') = d(w,v') < é(w,v) < d(v), so
dw) =68w, v).

Finally, we want to show thatallv € C(w) are visited. Suppose for a contradiction
that v € C(w) is not visited. Let («/, v') be the last edge on a shortest path to v
with ©’ visited. From above, we know that 1’ got assigned the correct distance, and
the same analysis as above implies that (1’, v') got relaxed when u’ was visited, but
then v" will be visited eventually, contradicting the choice of (v, v'). [
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Thus, the modified version of Dijkstra’s algorithm that we described does con-
struct C (w). It is easy to arrange that it would also produce a shortest path tree T (w)
spanning the cluster C (w). This would not affect the running time of the algorithm.

For a simple, yet relatively efficient, implementation of Dijkstra’s algorithm, we
can just use William’s heap [Williams 1964] (see also Cormen et al. [2001, Chap. 6])
to store the finite distances d(v) of the unvisited vertices. We can then both find the
v minimizing d(v) and decrease some d(v) in O(logn) time. The former is done
at most n — 1 times, and the latter is done at most m times, so the total running
time of the unmodified algorithm, from a given source vertex, is O ((m + n) log n).
It is easy to see that in the modified version of the algorithm, all the edges relaxed
are edges that touch vertices of C(w). Thus, the time spent on the construction of
C(w)is O(|E(C(w))|logn), where £(C(w)) is the set of edges touching vertices
of C(w). The complexity is reduced to O(|E(C(w))| + |C(w)|logn) if the more
sophisticated Fibonacci heaps of Fredman and Tarjan [1987] (see also Cormen et al.
[2001, Chap. 20]) are used.

The same conditional relaxation can be applied to Thorup’s SSSP algorithm
[Thorup 1999]. We first spend, once and for all, O (m) time on constructing a so-
called component hierachy. Afterwards, each cluster C(w), for w € V, can be
computed in O (|E(C (w))]) time.

When all the clusters C(w), for w € V are constructed, they are used to generate
the bunches B(v), for v € V. Recall that, by definition, w € B(v) ifand only if v €
C (w). The conversion can clearly be done in O(Zwe\/ |[Cw)|) = O(Zvev |B(v)|)
time.

Finally, the algorithm constructs (2-level) hash tables for the bunches B(v), for
v € V, and outputs the witnesses p;(v), the distances §(p;(v), v) = §(A;, v), and
the hash tables of B(v), forevery 1 < i < k and v € V. In addition to that, the
preprocessing algorithm also outputs, for every w € V, the shortest paths tree T (w)
that spans the cluster C (w).

The sum of the sizes of all the trees T (w), for w € W, is the same as the sum of
the sizes of all the clusters, which is also the sum of the sizes of all the bunches.
Thus, the size of the data structure produced is, asymptotically, the same as the
size of the data structure that would have been produced, had the preprocessing
algorithm of the previous section been applied to the shortest paths metric of the
graph. Thus, the expected size of the produced data structure is O (kn'*1/%). All
that remains, therefore, is to analyze the running time of prepro,(V, E). This is
done in Section 4.3.

As a final remark, we note that instead of constructing a separate hash table for
each bunch B(v), for v € V, we can construct a single (2-level) hash table of size
0>,y |B(v)|) that holds §(w, v), for every w, v € V such that w € B(v). The
access time would still be O(1).

4.2. ANSWERING A PATH QUERY. As all the data structures returned by the
metric preprocessing algorithm of Section 3.1 are also returned by the graph pre-
processing algorithm of Section 4.1, the query answering algorithm from Figure 2,
detailed in Section 3.2, may be used, without any modification, to answer approx-
imate distance queries.

We next describe how to augment the distance query algorithm if it is to return
not just an estimated distance dist;(«, v) of stretch at most 2k — 1, but also a path
from u to v of length at most dist;(u, v).



Approximate Distance Oracles 19

When the distance query algorithm terminates, w € B(v) sov € C(w). More-
over, by Lemma 4.1, w = p;(u) € B(u), so we also have u € C(w). Hence, the
path between u and v in T (w), the shortest paths tree of C(w), is of length at most
S(w, u) + 6(w, v). To report the edges on this path in constant time per edge, we
move in parallel from u and v towards the root w, stopping as soon as we reach,
from one of u and v, a vertex w’ that was already reached from the other. (This
vertex is the least common ancestor of u and v in the tree.) We then output the
edges on the path from u to w’ and, in reversed order, the edges on the path from v
tow’.

The above solution constructs the small-stretch path from u to v in amortized
constant time per edge. Using techniques from Thorup and Zwick [2001] it is
possible to construct the path in worst case constant time per edge. We do not
elaborate on this here.

4.3. ANALYSIS OF THE GRAPH PREPROCESSING ALGORITHM. As mentioned,
the complexity of constructing the cluster C (w)is O (|E(C (w))|) (or O ((|E(C (w))|+
|C (w)]) log n) if the simple modification of Dijkstra’s algorithm is used). Recall that
E(C(w)) is the set of edges that touch vertices of C(w). Let £(v) be the set of edges
that touch the vertex v. The total cost of constructing all clusters is asymptotically
bounded by

dYIECwHI D IEMI= D IEMI= ) (1B IEMD.

weV weV,veC(w) veV,weB(v) veV

By Lemma 3.2, the expected size of |B(v)| is at most kn'/¥ for any v € V, so by
linearity of expectation, the expected total cost is asymptotically bounded by

> @HEW)) = 2kmn'/*

veV

Since all other operations in prepro,(V, E) take only O (km) time, its total com-
plexity is O (kmn'/*).

As in the last section we note that it is only the expected size of the data structure
constructed which is O (kn'*t!/%). To obtain a data structure of size O (kn'*1/%),
we may have to run prepro,(V, E) several times, but the expected number of
repetitions is constant, so the total expected preprocessing time is still O (kmn'/*),
as specified in Theorem 1.1.

4.4. SPARSE SPANNERS AND TREE COVERS. As described in Section 4.2, the
query answering algorithm may actually find a stretched path between u« and v in
some tree T (w). We get, therefore, the following interesting corollary:

COROLLARY 4.3. The collection of shortest paths trees T(w), for w € V,
constructed by algorithm prepro,(V, E), forms a (2k — 1)-spanner of the graph
G = (V, E). The expected size of this 2k — 1)-spanner is O (kn'*t'/*) and it can
be constructed in O (kmn'/*) time.

As mentioned, the fact that every weighted graph on n-vertices has a (2k — 1)-
spanner with O (n'*!1/¥) edges is not new. The corollary gives, however, a much
faster algorithm for constructing such spanners. The fastest running time known
before, for weighted graph, was O (mn'*!/%) [Althofer et al. 1993]. For unweighted
graphs, there is linear time algorithm for constructing such spanners (see also
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Exercise 3 on page 188 of Peleg [2000a], attributed to (S. Halperin and Zwick
(1996, unpublished result)).
Combining Corollary 4.3 with Lemma 3.5, we also get the following corollary:

COROLLARY 4.4. The collection of shortest paths trees T(w), for w € V,
constructed by algorithm prepro.(V, E), with the sampling probability changed
from n=* to (n/Inn)~Y*, forms a tree cover of the graph G = (V, E) with
the following properties: (i) With high probability, every vertex is contained in
O(n'/* logl_l/k n) trees. (ii) For every two vertices u,v € V, there is a tree T (W)
inthis collection that contains a path between u and v that is of stretch at most 2k — 1.
Furthermore, the corresponding tree can be identified in O (k) time.

A deterministic algorithm for constructing such tree covers may be obtained using
the technique of Section 3.6. Our tree cover construction improves a construction
implicitin Awerbuch and Peleg [1992] (see also Peleg [2000a, Chap. 15]). In Thorup
and Zwick [2001], we use our tree cover construction, together with other ideas, to
obtain routing schemes for weighted undirected networks that exhibit an essentially
optimal tradeoff between the size of the routing tables used and the stretch of the
resulting routes.

5. Space Lower Bound

A simple argument shows that for any integer k, any graph on n vertices with at
least n'T!/¥ edges contains a cycle of size at most 2k. (For a proof that %nl“/ k
edges are in fact enough, see Alon et al. [2002]). This result is conjectured by Erdos
[1964], Bondy and Simonovits [1974] and Bollobas [1978] to be tight. Namely,
it is conjectured that for any k > 1, there are graphs with Q(n'T!/*) edges and
girth greater than 2k. As any graph contains a bipartite subgraph with at least half
the edges, the conjecture actually implies the existence of graphs with Q(n'*+!/%)
edges and girth at least 2k + 2. This conjecture was proved, however, only for
k=1,2,3,5 (see references below).

Let m4(n) be the maximal number of edges in an n-vertex graph with girth g.
The girth conjecture says that ma;,2(n) = Q(n'*!/*). Note, as mentioned above,
that mor2(n) = O(mar41(n)). The best bounds on m,(n), for even girth g, are
given in Table II. (Several references are given for each result. This is either
because the result was independently discovered by several authors, or because
there are several variants of the construction. Some of the references, for example,
Wenger [1991], were added as they are more accessible than the older references).
The results for g = 6 follow from constructions of finite projective geometries.
The constructions of Lazebnik et al. [1995, 1996] slightly improve results obtained
by Margulis [1988] and the results obtained using the Ramanujan graphs of
Lubotzky et al. [1988].

PROPOSITION 5.1. Let k be an integer, and let t < 2k + 1. Then, any stretch t
distance oracle for graphs with n vertices and m edges must use at least min{m,
mop42(n)} bits of storage on at least one input graph.

PROOF. Let O be a stretch ¢ distance oracle for graphs with n vertices and m
edges. For any graph H of this size, let Oy be the data structure produced by O by
preprocessing H . Let Oy (v, w) be the approximate distance returned by the oracle
for the query (v, w). Note that 5y (v, w) < Og(v,w) < ty(v, w).
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TABLE II. BEST KNOWN BOUNDS ON THE MAXIMUM NUMBER OF EDGES IN AN 7-VERTEX
GRAPH WITH A GIVEN GIRTH

[ girth | Number of Edges | Lower-Bound References I
4 O(n?) complete bipartite graphs
6 ) [Reiman 1958], [Erdés et al. 1966]

[Brown 1966], [Wenger 1991]
[Tits 1959], [Benson 1966]
[Wenger 1991]

[Tits 1959], [Benson 1966]
[Lazebnik and Ustimenko 1993]
[Tits 1959], [Benson 1966]

12 O(n®?) [Wenger 1991]
[Lazebnik and Ustimenko 1993]
[Lazebnik et al. 1995]

8 Bn*?)

10 Qn®), 0w

9/8 7/6
14 Q. 00T [Lazebnik et al. 1996]

10/9 8/7 [Woldar and Ustimenko 1993]
16 QE7F), 0™ [Lazebnik et al. 1995]
4r. r>5 Q(n1+3(,_11) ) O(n”ﬁ) [Lazebnik et al. 1995]

[Lazebnik et al. 1996]
[Lazebnik et al. 1995]
[Lazebnik et al. 1996]

b2, r>4 | Qut ), om't)

Let G be a girth 2k + 2 unweighted graph on n vertices with m’ = min{m,
mop42(n)} edges. (If m < myrp(n) we can simply pick an m-edge subgraph of a
girth 2k 4 2 graph with my;1,(n) edges).

Let H be any subgraph of G. Consider any edge (v,w) of G. If (v,w)isin H,
then Oy (v, w) <t < 2k + 1. But, if (v, w) is not in H, the shortest path from v
tow in H has at least 2k + 1 edges, so Oy (v, w) > 2k + 1. Consequently, all the 2"
subgraphs of G have different tables, and hence at least one requires m’ bits. []

Proposition 5.1 holds even if the oracle is only required to produce estimated
distances, without being required to produce corresponding paths. We point out,
however, that there is still a logarithmic gap of ®(klogn) between this lower
bound and our upper bound, even if the girth conjecture holds, as our algorithms
use O (kn'TV/*y words while the lower bound is Q(n'*1/%) bits.

Finally, we point out that no space efficient approximate distance oracles are
possible for directed graphs:

PROPOSITION 5.2. Any finite stretch distance oracle for directed graphs must
use at least Q(n>) bits of storage on at least one n-vertex graph.

PrROOF. LetV; ={1,2,...,n/2}andV, = {n/2+1,n/2+2, ..., n}. Consider
the family of directed graphs on V| U V, in which all edges are directed from V;
to V,. There are 2¢/2° such graphs. As in the proof on Proposition 5.1, each such
graph must be represented by a different table. Hence, at least one of tables is should
contain at least (n/2)? bits. [J

It is not difficult to see that Proposition 5.2 continues to hold even if the input
graphs are required to be strongly connected. We let V| = {1,2,...,n/3}, V), =
{n/34+1,n/34+2,...,2n/3}and V3 = {2n/3+1,2n/3+2, ..., n}, and consider
all graphs whose edge set is composed of a non-empty subset of V; x V, and
from all the edges of (V, x {2n/3 + 1) U{G,i +1) | 2n/3+1 <i < n}U
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({n} x Vi). There are 2/ — 1 such graphs and each one of them requires a
distinct table.

6. Concluding Remarks and Open Problems

We presented approximate distance oracles with fast preprocessing times, essen-
tially optimal space requirements, and constant query time. Our construction is
extremely simple. It yields, as byproducts, improved algorithms for constructing
sparse spanners, more compact tree covers, and more concise distance labelings.
Due to their basic nature, we expect our ideas to prove useful in many other contexts.

Some interesting open questions remain. First, our basic preprocessing algorithm
is randomized. While it was easy to derandomize it when the full distance matrix
was available, it is not clear how to do it in o(mn) time in the graph setting. It seems
that new ideas would be needed to achieve that.

Our oracles are almost optimal, in all respects, when the parameter £ is large. It
remains an interesting open problem, however, to reduce the preprocessing times of
small stretch oracles. The situation for stretch 3 is especially intriguing. We show
here that a stretch 3 oracle with a space requirement of O (n°/?) can be constructed
in O(mn'/?) time. Cohen and Zwick [2001] have shown that a stretch 3 oracle that
uses O(n?) space can be constructed in O(n”logn) time. Could these results be
combined, that is, is it possible to construct a stretch 3 oracle that uses only O (1n°/?)
space in O(n?) time? For unweighted graphs, this problem was recently solved by
Baswana and Sen [Baswana and Sen 2004].

As mentioned in Section 4.4, the results of this article, combined with some
other ingredients, yield essentially optimal routing schemes for weighted undirected
networks. More on this can be found in Thorup and Zwick [2001].
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