Exercise 1 Polarization observable and measurement principle

1) We first check that $\langle\alpha \mid \alpha\rangle=\left\langle\alpha_{\perp} \mid \alpha_{\perp}\right\rangle=1$ and $\left\langle\alpha \mid \alpha_{\perp}\right\rangle=\left\langle\alpha_{\perp} \mid \alpha\right\rangle=0$. Therefore, we have

$$
\begin{aligned}
\Pi_{\alpha}^{2} & =|\alpha\rangle\langle\alpha \mid \alpha\rangle\langle\alpha|=|\alpha\rangle\langle\alpha|=\Pi_{\alpha} \\
\Pi_{\alpha_{\perp}}^{2} & =\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp} \mid \alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right|=\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right|=\Pi_{\alpha_{\perp}} \\
\Pi_{\alpha} \Pi_{\alpha_{\perp}} & =|\alpha\rangle\left\langle\alpha \mid \alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right|=0 \\
\Pi_{\alpha_{\perp}} \Pi_{\alpha} & =\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp} \mid \alpha\right\rangle\langle\alpha|=0
\end{aligned}
$$

2)

$$
\begin{aligned}
|\langle\theta \mid \alpha\rangle|^{2} & =\langle\theta \mid \alpha\rangle\langle\theta \mid \alpha\rangle^{*}=\langle\theta \mid \alpha\rangle\langle\alpha \mid \theta\rangle=\langle\theta| \Pi_{\alpha}|\theta\rangle \\
\left|\left\langle\theta \mid \alpha_{\perp}\right\rangle\right|^{2} & =\left\langle\theta \mid \alpha_{\perp}\right\rangle\left\langle\theta \mid \alpha_{\perp}\right\rangle^{*}=\left\langle\theta \mid \alpha_{\perp}\right\rangle\left\langle\alpha_{\perp} \mid \theta\right\rangle=\langle\theta| \Pi_{\alpha_{\perp}}|\theta\rangle
\end{aligned}
$$

3) The probabilities are

$$
\begin{aligned}
& \operatorname{Prob}(p=+1)=|\langle\alpha \mid \theta\rangle|^{2}=|\cos \alpha \cos \theta+\sin \alpha \sin \theta|^{2}=(\cos (\theta-\alpha))^{2} \\
& \operatorname{Prob}(p=-1)=\left|\left\langle\alpha_{\perp} \mid \theta\right\rangle\right|^{2}=|-\sin \alpha \cos \theta+\cos \alpha \sin \theta|^{2}=(\sin (\theta-\alpha))^{2}
\end{aligned}
$$

and they sum to 1 ,

$$
\operatorname{Prob}(p=+1)+\operatorname{Prob}(p=-1)=(\cos (\theta-\alpha))^{2}+(\sin (\theta-\alpha))^{2}=1
$$

4) The expectation is

$$
\begin{aligned}
\mathrm{E}[p] & =(+1) \operatorname{Prob}(p=+1)+(-1) \operatorname{Prob}(p=-1) \\
& =(\cos (\theta-\alpha))^{2}-(\sin (\theta-\alpha))^{2} \\
& =\cos (2(\theta-\alpha))
\end{aligned}
$$

and the variance is

$$
\begin{aligned}
\operatorname{Var}(p) & =\mathrm{E}\left[p^{2}\right]-(\mathrm{E}[p])^{2} \\
& =1-(\mathrm{E}[p])^{2} \\
& =(\cos (\theta-\alpha))^{2}-(\sin (\theta-\alpha))^{2} \\
& =1-(\cos (2(\theta-\alpha)))^{2} \\
& =(\sin (2(\theta-\alpha)))^{2}
\end{aligned}
$$

In fact they should match with the computation in Dirac notation because

$$
\begin{aligned}
\langle\theta| P_{\alpha}|\theta\rangle & =\langle\theta|\left((+1) \Pi_{\alpha}+(-1) \Pi_{\alpha_{\perp}}\right)|\theta\rangle \\
& =(+1)\langle\theta| \Pi_{\alpha}|\theta\rangle+(-1)\langle\theta| \Pi_{\alpha_{\perp}}|\theta\rangle \\
& =(+1) \operatorname{Prob}(p=+1)+(-1) \operatorname{Prob}(p=-1) \\
& =\mathrm{E}[p]
\end{aligned}
$$

and

$$
\begin{aligned}
\langle\theta| P_{\alpha}^{2}|\theta\rangle & =\langle\theta|\left((+1) \Pi_{\alpha}+(-1) \Pi_{\alpha_{\perp}}\right)^{2}|\theta\rangle \\
& =\langle\theta|\left(\Pi_{\alpha}^{2}-\Pi_{\alpha} \Pi_{\alpha_{\perp}}-\Pi_{\alpha_{\perp}} \Pi_{\alpha}+\Pi_{\alpha_{\perp}}^{2}\right)|\theta\rangle \\
& =\langle\theta|\left(\Pi_{\alpha}+\Pi_{\alpha_{\perp}}\right)|\theta\rangle \\
& =(+1)^{2}\langle\theta| \Pi_{\alpha}|\theta\rangle+(-1)^{2}\langle\theta| \Pi_{\alpha_{\perp}}|\theta\rangle \\
& =(+1)^{2} \operatorname{Prob}(p=+1)+(-1)^{2} \operatorname{Prob}(p=-1) \\
& =\mathrm{E}\left[p^{2}\right]
\end{aligned}
$$

thereby giving $\mathrm{E}[p]=\langle\theta| P_{\alpha}|\theta\rangle$ and $\operatorname{Var}(p)=\mathrm{E}\left[p^{2}\right]-(\mathrm{E}[p])^{2}=\langle\theta| P_{\alpha}^{2}|\theta\rangle-\langle\theta| P_{\alpha}|\theta\rangle^{2}$.

Exercise 2 Product versus entangled states

We use the conventional correspondance $|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}$. Then we have

$$
(\alpha|0\rangle+\beta|1\rangle) \otimes(x|0\rangle+y|1\rangle)=\binom{\alpha}{\beta}\left(\begin{array}{ll}
x & y
\end{array}\right)=\left(\begin{array}{cc}
\alpha x & \alpha y \\
\beta x & \beta y
\end{array}\right)
$$

Thus a product state of two qubits is a rank-one matrix. So for a general state $|\psi\rangle=$ $\sum_{i j} \alpha_{i j}|i j\rangle$, a simple condition is to check if the matrix $A=\left(\alpha_{i j}\right)_{0 \leq i, j \leq 1}$ is of rank one, that is to say (and because $A \neq 0$), if its determinant is $0: \operatorname{det}(A)=0$, that is $\alpha_{00} \alpha_{11}=\alpha_{01} \alpha_{10}$

1. product state $(\operatorname{det}(A)=0)$, normalized
2. entangled $(\operatorname{det}(A)=-2)$, normalized
3. entangled $\operatorname{det}(A)=-\frac{1}{\sqrt{3 \cdot 6}}-\frac{1}{\sqrt{36}} \neq 0$, not normalized
4. all entangled $(\operatorname{det}(A) \neq 0$ for all of them), normalized
5. we find $\operatorname{det}(A)=\epsilon$, so only a product state for $\epsilon=0$, entangled otherwise, normalized in all cases
6. Let's assume $|\psi\rangle=(x|0\rangle+y|1\rangle) \otimes(u|0\rangle+v|1\rangle) \otimes(s|0\rangle+t|1\rangle)$, then we should have $x u t=x v s=y u v=1$ and all the other products are 0 otherwise. For instance: $y u t=0$. However, because $x u t=1$, then $u t \neq 0$, and because $y u v=1$ then $y \neq 0$, therefore yut $\neq 0$. So our assumption is wrong and the state is entangled, and also normalized
7. entangled for similar reasons, normalized
8. product state as $|\psi\rangle=\frac{1}{\sqrt{2}^{3}}(|0\rangle+|1\rangle)^{\otimes 3}$, and normalized

Exercise 3 Unitary transformations

1) The operator is $U=e^{i \omega t}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$, thus $U^{\dagger}=e^{-i \omega t}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$ and it is straightforward to check that $U^{\dagger} U=U U^{\dagger}=I=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$
2) We find $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and $H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$, so in fact $H|i\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{i}|1\rangle\right)$ for $i \in\{0,1\}$. Therefore, we have:

$$
\langle j| H^{\dagger} H|i\rangle=\frac{1}{2}\left(\left(\langle 0|+(-1)^{j}\langle 1|\right)\left(|0\rangle+(-1)^{i}|1\rangle\right)\right)=\frac{1}{2}\left(1+(-1)^{i+j}\right)=\delta_{i j}
$$

with $\delta_{i j}$ the kroenecker symbol.
3) Similarly, we find $X|i\rangle=|i \oplus 1\rangle$ thus $\langle j| X^{\dagger} X|i\rangle=\langle j \oplus 1 \mid i \oplus 1\rangle=\delta_{i j}$
4) Step by step:

$$
\begin{align*}
\left(U_{1} \otimes U_{2}\right)^{\dagger}\left(U_{1} \otimes U_{2}\right) & =\left(U_{1}^{\dagger} \otimes U_{2}^{\dagger}\right)\left(U_{1} \otimes U_{2}\right) \tag{1}\\
& =\left(U_{1}^{\dagger} U_{1}\right) \otimes\left(U_{2}^{\dagger} U_{2}\right) \tag{2}\\
& =I \otimes I \tag{3}\\
& =I \tag{4}
\end{align*}
$$

5) It is straightforward to check that: $\operatorname{CNOT}(|i, j\rangle)=|i, j \oplus i\rangle$. Thus:

$$
\langle k, l| \mathrm{CNOT}^{\dagger} \mathrm{CNOT}|i, j\rangle=\langle k, l \oplus k \mid i, i \oplus j\rangle=\delta_{i, k} \delta_{(l \oplus k),(i \oplus j)}=\delta_{i, k} \delta_{l, j}
$$

First let $\left|\psi_{1}\right\rangle=(H|i\rangle) \otimes|j\rangle$, we have using question 2:

$$
\left|\psi_{1}\right\rangle=(H|i\rangle) \otimes|j\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{i}|1\rangle\right) \otimes|j\rangle=\frac{1}{\sqrt{2}}\left(|0, j\rangle+(-1)^{i}|1, j\rangle\right)
$$

Therefore using question 5 :

$$
\operatorname{CNOT}\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(|0, j\rangle+(-1)^{i}|1, j \oplus 1\rangle\right)=\left|\beta_{i j}\right\rangle
$$

Because H and I are both unitary using question 2 , then $U \otimes I$ is unitary using question 4 . Then because CNOT is unitary (question 5), using the fact that the set of unitary matrices equipped with the product of matrices is a group, then $O=\mathrm{CNOT} \cdot(H \otimes I)$ is also unitary, hence $\beta_{i j}$ forms an orthonormal basis as it is the image of an orthonormal basis with the unitary operator O.

Exercise 4 Interferometer with an atom on the ray

1) The matrices in Dirac notation are

$$
\begin{aligned}
& \left.S=\frac{1}{\sqrt{2}}|H\rangle\langle H|+\frac{1}{\sqrt{2}}|H\rangle\langle V|+\frac{1}{\sqrt{2}}|V\rangle\langle H|-\frac{1}{\sqrt{2}}|V\rangle\langle V|+\mid \text { abs }\right\rangle\langle\text { abs }| \\
& R=|H\rangle\langle V|+|V\rangle\langle H|+|a b s\rangle\langle\text { abs }| .
\end{aligned}
$$

To find $U=S A R S$ we proceed by steps:

$$
\begin{aligned}
R S & =\frac{1}{\sqrt{2}}|H\rangle\langle H|-\frac{1}{\sqrt{2}}|H\rangle\langle V|+\frac{1}{\sqrt{2}}|V\rangle\langle H|+\frac{1}{\sqrt{2}}|V\rangle\langle V|+|a b s\rangle\langle\mathrm{abs}|, \\
A R S & =|H\rangle\langle\mathrm{abs}|+\frac{1}{\sqrt{2}}|V\rangle\langle H|+\frac{1}{\sqrt{2}}|V\rangle\langle V|+\frac{1}{\sqrt{2}}|\mathrm{abs}\rangle\langle H|-\frac{1}{\sqrt{2}}|\mathrm{abs}\rangle\langle V|
\end{aligned}
$$

and finally

$$
\begin{aligned}
U=S A R S=\frac{1}{2}|H\rangle\langle H| & +\frac{1}{2}|H\rangle\langle V|+\frac{1}{\sqrt{2}}|H\rangle\langle\mathrm{abs}| \\
& -\frac{1}{2}|V\rangle\langle H|-\frac{1}{2}|V\rangle\langle V|+\frac{1}{\sqrt{2}}|V\rangle\langle\mathrm{abs}| \\
& +\frac{1}{\sqrt{2}}|\mathrm{abs}\rangle\langle H|-\frac{1}{\sqrt{2}}|\mathrm{abs}\rangle\langle V| .
\end{aligned}
$$

2) As $S A R S|H\rangle=\frac{1}{2}|H\rangle-\frac{1}{2}|V\rangle+\frac{1}{\sqrt{2}}|a b s\rangle$, the probabilities of the three events are

$$
\begin{aligned}
& \left.\operatorname{Prob}\left(D_{1}\right)=|\langle V| S A R S| H\right\rangle\left.\right|^{2}=\frac{1}{4} \\
& \left.\operatorname{Prob}\left(D_{2}\right)=|\langle H| S A R S| H\right\rangle\left.\right|^{2}=\frac{1}{4} \\
& \operatorname{Prob}(\mathrm{abs})=|\langle\operatorname{abs}| S A R S| H\rangle\left.\right|^{2}=\frac{1}{2}
\end{aligned}
$$

which sum to 1 .
3) A legitimate matrix has to be unitary. The first matrix

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

is not unitary because

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \neq I
$$

The second matrix

$$
\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

is unitary because

$$
\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I .
$$

Thus the second matrix may model the absorption and reemission of the photon. Note also that this matrix acts like a Hadamard matrix on the subspace $\{|H\rangle$, |abs $\rangle\}$.

