Homework 3 Solution
Traitement Quantique de I'Information

Exercise 1 Polarization observable and measurement principle
1) We first check that (a|a) = (a,|ay) =1 and (o]|ar) = (o) |a) = 0. Therefore, we have

12 = |a) (a|a) (a] = |a) (o] =11,
2 = lay) (ar]ar) (er] = |ayr) (ar] =14,

{
)

Holla, = | (alar) ey
)

[ (Bla) [ = (Bla) (Bla)” = (Blar) (al6)) = (0| TTa |0},
[ (Blas) [* = (Blas) (Blor)” = (Blar) {ar]0) = (0] o, |6)

3) The probabilities are

Prob(p = + 2

Prob(p = —

{a]f) |* = | cosacos @ + sinasin §)* = (cos( — a))

)

1=
1) =|{ai|0)]* =| —sinacos® + cosasinf|* = (sin(f — a))?
and they sum to 1,

Prob(p = +1) + Prob(p = —1) = (cos(d — a))* + (sin(d — a))* = 1

4) The expectation is

E[p] = (+1)Prob(p = +1) + (—1)Prob(p = —1)
= (cos(f — a))? — (sin(f — ))?
= cos (2(0 — a))

and the variance is



In fact they should match with the computation in Dirac notation because
(0] Pa |0) = (0] (+ 1) + (1)L, ) |0)

= (+1) (0] 1o |0) + (=1) (0] 1L, |6)
= (+1)Prob(p = +1) + (—1)Prob(p = —1)

= E[p]
and
(0| P210) = (0] ((+1 —IL, ) 10)
= (0| (H — I, M, + 112 ) |6)
= (0] (11, )

= (+1)* <9| I, !9> (=1)* (0|11, 6)
= (+1)*Prob(p = +1) + (=1)*Prob(p = —1)
= E[p’]

thereby giving E[p] = (0] P, |6) and Var(p) = E[p?] — (E[p])* = (0] P2 |0) — (0] Pa [0)".
Exercise 2 Product versus entangled states

0

We use the conventional correspondance |0) = (1), 1) = (1

0 ) Then we have

(]0) + 811)) @ (x[0) +y 1)) = @ (v v) = (Zi 25)

Thus a product state of two qubits is a rank-one matrix. So for a general state |¢)) =
> _ij @i lij), a simple condition is to check if the matrix A = (ij)o<i <1 is of rank one, that
is to say (and because A # 0), if its determinant is 0: det(A) = 0, that is agoar1 = agraqo

—~

1. product state (det(A) = 0), normalized

2. entangled (det

—~

A) = —2), normalized

3. entangled det(A) = —\/% — ﬁ

4. all entangled (det(A) # 0 for all of them), normalized

# 0, not normalized

5. we find det(A) = ¢, so only a product state for e = 0, entangled otherwise, normalized
in all cases

6. Let’s assume |¢) = (z|0) + y|1)) ® (u]0) +v|1)) ® (s]0) + £|1)), then we should
have zut = xvs = yuv = 1 and all the other products are 0 otherwise. For instance:
yut = 0. However, because xut = 1, then ut # 0, and because yuv = 1 then y # 0,
therefore yut # 0. So our assumption is wrong and the state is entangled, and also
normalized

7. entangled for similar reasons, normalized

2



8. product state as [¢)) = # (10) + [1))®*, and normalized

Exercise 3 Unitary transformations

1) The operator is U = ™t |)hg) (|, thus UT = e~ 1)) (1| and it is straightforward to
check that UTU = UUT = I = |1bp) (1]

2) We find H [0) = 5(|0)+[1)) and H [1) = 5(|0)~[1)), so in fact H [i) = \%(\O)—i—(—l)i 1))
for i € {0,1}. Therefore, we have:

(1 + (—1)“‘]) — 51']'

DO | —

, _ 1 , .
GIHTH i) = 5 (O] + (=1)7 (1))([0) + (=1)"[1))) =
with d;; the kroenecker symbol.
3) Similarly, we find X |i) = |i & 1) thus (j| XTX i) = (j D 1|i ® 1) = §;;

4) Step by step:

(U1 & Un) (U1 ® Un) = (Uf @ US)(Uy ® Un) (1)
= (U{th) ® (UUy) (2)
Y 3)
=1 (4)

5) Tt is straightforward to check that: CNOT(|i,5)) = |i,j @ 7). Thus:

(k,1] CNOTTCNOT 4, j) = (k, 1 ® kli,i ® j) = 6; x0uen) (i) = 0ik01,

First let [¢1) = (H [i)) ® |j), we have using question 2:

i) = (1) @ 13) = =0 + (<1! [1) @ 1) = 2=(00.9) + (1) |1.7)
Therefore using question 5:
CNOT ) = —= (10.4) + (<1 [L.d & 1)) = |d)

Because H and I are both unitary using question 2, then U ® I is unitary using question 4.
Then because CNOT is unitary (question 5), using the fact that the set of unitary matrices
equipped with the product of matrices is a group, then O = CNOT - (H ® I) is also unitary,
hence f3;; forms an orthonormal basis as it is the image of an orthonormal basis with the
unitary operator O.



Exercise 4 Interferometer with an atom on the ray

1) The matrices in Dirac notation are

) (HI + — [H) (VI+ — ) (V| + [abs) (abs|

1
= |H) (V| +|V) (H| + |abs) (abs| .

To find U = SARS we proceed by steps:

s=%|ﬂ><H|—%|H><V|+ 25 V) (I + 5 [V) (V] + fabs) abs]
ARS = |H) (abs| +—= V) (H]+—= V) (V] + —= [abs) (H] = —=abs) V]
and finally
U = SARS = _|H) (H|+ ) (V|+\/_|H) <abs|
— 3 IV) | = FIV) V4 |V) (abs

1 1
+ —= |abs) (H| — —= |abs) (V] .
7 |abs) (H] 7 |abs) (V|
2) As SARS|H) =3 |H) — 3 |V) + % labs), the probabilities of the three events are

1
Prob(D;) = | (V| SARS |H) |* = T
1
Prob(D,) = | (H| SARS |H) |* = T
1
Prob(abs) = | (abs| SARS |H) |* = 2
which sum to 1.
3) A legitimate matrix has to be unitary. The first matrix
0 0 1
000
1 00
is not unitary because
001 0 01 1 00
000 00 0]=1000]#IL
1 00 1 00 0 01
The second matrix
1 1
i
0 1 0
1 9 L
V2 V2



is unitary because

1 1 1

20 B\ (" =z 100

0 1 0 0O 1 0 |=101°0]=1I
1 1 1 1

TG VANV R e 001

Thus the second matrix may model the absorption and reemission of the photon. Note
also that this matrix acts like a Hadamard matrix on the subspace {|H) , |abs)}.



