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Exercise 1 - Plasma Production

a) The definition of relative degree of ionization is

α =
ne

ne + nAr

where nAr = NAr/V is the density of neutral Argon atoms (number of Ar atoms per
m3). To evaluate nAr we can use the ideal gas law:

pAr = nAr kB TAr (1)

where pAr is the pressure of Argon inside the vacuum chamber in Pascal, kB = 1.38×
10−23 J/K is the Boltzmann constant and TAr is the temperature of the Argon gas in
Kelvin (normally assumed to be at room temperature - 298 K). Inverting this equation
for nAr one finds that

nAr =
pAr

kB TAr

(2)

In order to use this expression one needs to convert the pressure given in Torr to Pascal
using 760 Torr = 1.01× 105 Pa. Then pAr = 1.33× 10−2 Pa. Thus, the neutral Argon
number density nAr is

nAr = 3.23× 1018m−3 (3)

The degree of ionization with ne = 1× 1016 m−3 and nAr = 3.23× 1018m−3 is

α =
ne

ne + nAr︸ ︷︷ ︸
≈ nAr

=
1× 1016

1× 1016 + 3.23× 1018
≈ 3.08× 10−3
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b) The electron-neutral collision frequency is

νen = nAr σn vrel

where vrel is the relative velocity between electrons and neutrals and σn = 103 π a20 is
the collision cross-section. Since me ≪ mAr and Te ≫ T0, we can assume vrel ≃ ve.

In general, νen is a function of the electron velocity and, implicitly, σn = σn(ve). In
our problem we can consider σn constant and a typical velocity of the electrons equal

to their thermal velocity vthe =
√

e Te

me
.

Plugging these numbers in the expression above we find:

νen = 3.23× 1018 m−3 · 103 π (5.29× 10−11)2︸ ︷︷ ︸
a20

m2 ·
√

e Te

me

m

s
≈ 2.06× 107 s−1

c) Can we consider this gas to be a plasma?

• The Debye length is:

λD =

√
ε0 Te

e2 ne

≈ 7430

√
Te[eV]

ne [m−3]
= 7430

√
3

1016
m = 0.13 mm

The ionized gas is confined in a container of dimension Lp ≈ 0.5m ≫ 0.13mm.
We see then that Lp ≫ λD as required for a plasma.

• ND = 4
3
π λ3

D ne ≈ 9.2 × 104 ≫ 1, so the condition of the plasma parameter
g = N−1

D ≪ 1 is verified.

• To see dynamic collective effects in a plasma (oscillations at the frequency ωp),
we need ωp to be much larger than the collision frequency:

ωp =

√
e2 ne

me ε0
≈ 18π

√
ne [m−3] rad/s = 18π

√
1016 rad/s = 5.7× 109 rad/s

To compare ωp with νen we need to convert it in s−1:

fp =
ωp

2π
≈ 0.9× 109 s−1 > νen = 2.06× 107 s−1

We can therefore conclude that this ionized gas is a plasma.
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Exercise 2 - Mirror effect

a) In an ideal solenoid the field lines would be straight through the ring-shaped con-
ductors. However due to the finite distance between the two coils the field lines will
diverge after the first ring, and reconverge when entering the second ring.

b) The field will be strongest at the location of the coils, and weaker in the middle. Far
to the left and right of the coils the field will decay approximately as 1/r3, similarly
as for a magnetic dipole.

Figure 1: Field lines and field strength in a magnetic mirror.

c) A particle with velocity only along the axis will feel no force because it moves parallel
to the magnetic field. It will continue undisturbed along its path.

d) Denote the minimum magnetic field strength halfway the coils as B0 and the maximum
field at each coil as B1. Conservation of kinetic energy gives

1

2
mv2||,0 +

1

2
mv2⊥,0 =

1

2
mv2||,1 +

1

2
mv2⊥,1

Conservation of the adiabatic invariant gives

mv2⊥,0

B0

=
mv2⊥,1

B1

Using this result, one can substitute for v2⊥,1

1

2
mv2||,0 +

1

2
mv2⊥,0

(
1− B1

B0

)
=

1

2
mv2||,1

Since B1 > B0 the second term on the left hand side is negative. If B1 is large enough
then this term will cancel the first term, and v||,1 can become zero.
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Figure 2: Loss cone of a particle in a magnetic mirror.

e) If a particle is reflected, there must be a point on its trajectory where v||,1 = 0.
Rearranging the expression found in (d) we get

1

2
mv2||,0 +

1

2
mv2⊥,0 =

B1

B0

1

2
mv2⊥,0 (4)

v2||,0 + v2⊥,0

v2⊥,0

=
B1

B0

(5)

sin2 θc =
B0

B1

(6)

Here θc is an angle on the (v||,0, v⊥,0) plane (see Fig. 2). The zone θ < θc is referred to
as the loss cone of the velocity distribution. Particles with velocity components in this
loss cone at the midplane will not be trapped in the magnetic mirror and will escape.

The loss cone is one of the fundamental reasons why fusion based on magnetic mir-
rors is difficult to achieve. For confinement, we would like particles to have a high
perpendicular velocity. However, due to collisions, the particles will acquire a parallel
velocity as well, pushing them into the loss cone and allowing them to escape from the
mirror.
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Exercise 3 - Confinement by a toroidal field

a) Ampère’s law in integral form reads∮
C

B ·dℓ = µ0

∫∫
S

j ·dS = µ0I

This is valid for any contour containing the current carrying wire. Due to symmetry,
if we choose the contour as a circle centered at the wire, B is constant along the
integration path. Therefore

B

∮
C

dℓ = 2πrBθ = µ0I

Bθ =
µ0I

2πr

Clearly the field strength decreases as 1/r.

Using Ampère’s law in differential form (in cylindrical coordinates) we get a similar
result

(∇×B)z =
1

r

[
∂

∂r
(rBθ)−

∂Br

∂θ

]
= 0

We immediately remove terms involving ∂/∂θ because of symmetry.

1

r

∂

∂r
(rBθ) = 0

rBθ = k

Bθ =
k

r

with k the appropriate constant of integration. In this case also we see that the field
strength decreases as 1/r.

The gradient of the magnetic field strength is easy to compute, since the only compo-
nent is Bθ which depends only on r.

∇B =
d

dr
Bθ(r) r̂

=
d

dr

(
µ0I

2πr

)
r̂

= − µ0I

2πr2
r̂

As could be expected, the gradient is oriented in the −r̂ direction.

5



B(r)
θ

Β

d,iv

vd,e

z

r

θ

I

E ExB

Figure 3: Toroidal B field created by current carrying wire. The ∇B-drift (which is
opposite for electrons and ions) causes charge separation which creates an electric field.
The resulting E ×B drift drives the bulk of the plasma outwards.

b) We can now evaluate the direction of the various drifts. The ∇B drift is in the
direction of ∓B × ∇B for electrons and ions respectively. The curvature drift has
direction ∓Rc ×B for electrons and ions respectively. Since ∇B and Rc are opposite,
both drifts will have the same effect: they will cause ions to drift upwards and electrons
to drift downwards.

This charge separation will result in an electric field in the −ẑ direction: E = −E ẑ.
The resulting E×B drift is oriented in the outward radial direction for both ions and
electrons. This is the fundamental reason why it is not possible to confine a plasma in
a simple toroidal field.

Note: in a Tokamak, this problem is solved by driving a current through the plasma. The
resulting poloidal magnetic field will add to the toroidal field, producing helical twisted
field lines which periodically visit both top and bottom parts of the plasma. This provides
a path for the particles to counteract the charge separation, thus “short circuiting” this
instability.
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