
Prof. George Candea

School of Computer & Communication Sciences

POCS: Technical Writing

George Candea Principles of Computer Systems

http://users.auth.gr/ksiop/phd_funny/research_in_progress__funny/pic10.gif

There is too much stuff to read

Feed the reader reasons to
continue reading

Good tech writing
is rare

Good tech writing
can be learned

Master the
language

"This is what writing a paper with a first-year PhD student is like"

George Candea Principles of Computer Systems

Good Writing

George Candea Principles of Computer Systems

… so I wait for you like a lonely house
till you will see me again and live in me.
Till then my windows ache.

(Pablo Neruda)

The dopamine signaling in the nucleus
accumbens of my basal forebrain is lower than
normal due to your physical absence.

The performance of our cache becomes
tremendously small when the data is
accessed in a very adversarial manner.

(1st year PhD student)

The hit rate of the CPU cache drops by up
to 95% if programs consistently write to the
least-recently read memory address.

Lyrical wri!ng Technical writing

What ? To whom ?

How to transfer efficiently?

George Candea Principles of Computer Systems

George Candea Principles of Computer Systems

Perfection must be reached by degrees;
she requires the slow hand of time.

(attributed to Voltaire)

The Writing Process

George Candea Principles of Computer Systems

Perfection is finally attained not when there
is no longer anything to add, but when there
is no longer anything to take away.

(Antoine de Saint-Exupéry, “L’Avion”, Ch. III)

George Candea Principles of Computer Systems

December 5, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

December 12, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

December 18, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

December 22, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

December 24, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

December 26, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

December 28, 1945

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

January 2, 1946

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

January 5, 1946

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

January 10, 1946

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

 January 17, 1946

Drawing courtesy of http://www.artyfactory.com/art_appreciation/animals_in_art/pablo_picasso.htm

George Candea Principles of Computer Systems

It takes a lot of hard work to make something
simple, to truly understand the underlying
challenges and come up with elegant
solutions. You have to deeply understand the
essence of a product in order to be able to get
rid of the parts that are not essential.

Steve Jobs

vs. vs.

The Writing Process

George Candea Principles of Computer Systems

Perfection is finally attained not when there
is no longer anything to add, but when there
is no longer anything to take away.

(Antoine de Saint-Exupéry, L’Avion, Ch. III)

Recursion in Technical Writing

George Candea Principles of Computer Systems

Recursive Structure

George Candea Principles of Computer Systems

Paper title

Paragraph: topic sentence (abstract) + body
Paragraph: topic sentence (abstract) + body
…

Section title

Section title
…

1st paragraph: section abstract

Section conclusion

Paper abstract

Paper conclusion

George Candea Principles of Computer Systems

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Principles of Computer Systems

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Principles of Computer Systems

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Principles of Computer Systems

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Principles of Computer Systems

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Principles of Computer Systems

Deadlock Immunity: Enabling Systems To Defend Against Deadlocks

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].
The simplest mechanism used for synchronizing con-

current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.
Avoiding the introduction of deadlock bugs during de-

velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.
Even deadlock-free code is not guaranteed to execute

free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).
Debugging deadlocks is hard—merely seeing a dead-

lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].
We expect the deadlock challenge to persist and likely

become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.
In this paper, we introduce the notion of deadlock

immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.
In the rest of the paper we survey related work (§2),

give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Appears in Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), December 2008

George Candea Principles of Computer Systems

In the developing world 1.1 billion people still lack access to safe
drinking water, 2.6 billion do not have access to adequate sanitation
services, and more than 1.6 million deaths each year are traced to
waterborne diseases (mostly in children under five). All too often in
developing countries, water is costly or inaccessible to the poorest in
society, while the wealthy have it piped into their homes. In addition,
because of the infrastructure that is used to control water, whole seas
are being lost, rivers are running dry, millions of people have been
displaced to make room for reservoirs, groundwater aquifers are being
pumped down, and disputes over water have raised tensions from local
to international levels. Fresh water is a limiting resource in many parts
of the world and is certain to become even more so as the 21st century
unfolds.

(Wright and Boorse, Environmental Science, p. 247)

George Candea Principles of Computer Systems

In the developing world 1.1 billion people still lack access to safe
drinking water, 2.6 billion do not have access to adequate sanitation
services, and more than 1.6 million deaths each year are traced to
waterborne diseases (mostly in children under five). All too often in
developing countries, water is costly or inaccessible to the poorest in
society, while the wealthy have it piped into their homes. In addition,
because of the infrastructure that is used to control water, whole seas
are being lost, rivers are running dry, millions of people have been
displaced to make room for reservoirs, groundwater aquifers are being
pumped down, and disputes over water have raised tensions from local
to international levels. Fresh water is a limiting resource in many parts
of the world and is certain to become even more so as the 21st century
unfolds.

(Wright and Boorse, Environmental Science, p. 247)

George Candea Principles of Computer Systems

In colonial days, huge flocks of snowy egrets inhabited the coastal
wetlands and marshes of the southeastern United States. In the 1800s,
when fashion dictated fancy hats adorned with feathers, egrets and
other birds were hunted for their plumage. By the late 1800s, egrets
were almost extinct. In 1886, the newly formed National Audubon
Society began a press campaign to shame “feather wearers” and end
the practice. The campaign caught on, and gradually, attitudes
changed; new laws followed. Government policies that protect animals
from overharvesting are essential to keep species from the brink of
extinction. Even when cultural standards change due to the efforts of
individual groups (such as the National Audubon Society), laws and
policy measures must follow to ensure that endangered populations
remain protected. Since the 1800s, several important laws have been
passed to protect a wide variety of species.

(Wright and Boorse, Environmental Science: Toward a Sustainable Future, p. 150)

George Candea Principles of Computer Systems

In colonial days, huge flocks of snowy egrets inhabited the coastal
wetlands and marshes of the southeastern United States. In the 1800s,
when fashion dictated fancy hats adorned with feathers, egrets and
other birds were hunted for their plumage. By the late 1800s, egrets
were almost extinct. In 1886, the newly formed National Audubon
Society began a press campaign to shame“feather wearers”and end the
practice.The campaign caught on, and gradually, attitudes changed;
new laws followed. Government policies that protect animals from
overharvesting are essential to keep species from the brink of
extinction. Even when cultural standards change due to the efforts of
individual groups (such as the National Audubon Society), laws and
policy measures must follow to ensure that endangered populations
remain protected. Since the 1800s, several important laws have been
passed to protect a wide variety of species.

(Wright and Boorse, Environmental Science: Toward a Sustainable Future, p. 150)

George Candea Principles of Computer Systems

The National Cancer Institute (NCI) has taken a brute-force approach to
screening species for cancer-suppressing chemicals. NCI scientists
receive frozen samples of organisms from around the world, chop them
up, and separate them into a number of extracts, each probably
containing hundreds of components. These extracts are tested against
up to 60 different types of cancer cells for their efficacy in stopping or
slowing growth of the cancer. Promising extracts are then further
analyzed to determine their chemical nature, and chemicals in the
extract are tested singly to find the effective compound.This approach is
often referred to as the “grind ’em and find ’em” strategy.

(Belk and Maier, Biology, p. 334)

George Candea Principles of Computer Systems

The National Cancer Institute (NCI) has taken a brute-force approach to
screening species for cancer-suppressing chemicals. NCI scientists
receive frozen samples of organisms from around the world, chop them
up, and separate them into a number of extracts, each probably
containing hundreds of components. These extracts are tested against
up to 60 different types of cancer cells for their efficacy in stopping or
slowing growth of the cancer. Promising extracts are then further
analyzed to determine their chemical nature, and chemicals in the
extract are tested singly to find the effective compound.This approach is
often referred to as the “grind ’em and find ’em” strategy.

(Belk and Maier, Biology, p. 334)

Writing a good topic sentence

• Structure as topic + controlling idea
• topic = what the paragraph is about
• viewpoint = the direction the paragraph will take

• Strike a balance between general and specific

• Be clear

George Candea Principles of Computer Systems

RCU locks are a good fit
for three reasons.

The algorithm is mostly based on prior
work except for one novel detail.

George Candea Principles of Computer Systems

Almost 90% of Americans own cell phones [18].

Almost 90% of Americans own cell phones [18],
leading the the wide spread of SMS-based attacks.

George Candea Principles of Computer Systems

This paragraph shows how to un-marshall RPC arguments.

Un-marshalling RPC arguments requires three steps.

Recursive Structure

George Candea Principles of Computer Systems

Paper title

Paragraph: topic sentence + body
Paragraph: topic sentence + body
…

Section title

Section title
…

1st paragraph: section abstract

Section conclusion

Paper abstract

Paper conclusion

Writing Tips & Tricks

George Candea Principles of Computer Systems

Keep Opinions to Yourself

George Candea Principles of Computer Systems

Statement =

Fact

Result

Opinion

citations

proof

measurement

???

Keep Opinions to Yourself

George Candea Principles of Computer Systems

Statement =

Fact

Result

Opinion

citations

proof

measurement

???

Many researchers have considered this an
important problem, but few solutions exist.

Maximum Clarity ⇔ No Vagueness

• Scientific writing instead of poetry

• precise, crystal clear

• arguments are objective, logical, not subject to interpretation

• Written text vs. idea in your head

• Text must withstand the scrutiny of a logician

• Consistency terminology

George Candea Principles of Computer Systems

Clarity: Quantify

George Candea Principles of Computer Systems

The performance of our cache becomes
tremendously small when the data is
accessed in a very adversarial manner.

The hit rate of the CPU cache drops by up
to 95% if programs consistently write to the
least-recently read memory address.

Clarity: Avoid passive voice

George Candea Principles of Computer Systems

The items are then shown in alphabetical
order.

The program then outputs the items to the
console in alphabetical order.

“A bar was walked into by the passive voice.” X
The order of the items is alphabetical.

Clarity: Avoid reverse anthropomorphism

George Candea Principles of Computer Systems

Then you send the packet to the server

Our file system recovers …

Then the client application sends the
packet to the server.

The client's file system recovers…

Clarity: Avoid hyperbolae

George Candea Principles of Computer Systems

We show greatly improved throughput.

Clarity: Avoid hyperbolae

George Candea Principles of Computer Systems

We show greatly improved throughput.

We show a 26% to 77% improvement in
throughput.

George Candea Principles of Computer Systems

Visual Data Mining of Genomic Databases
by Immersive Graph-Based Exploration

N. FÉREY
LIMSI/CNRS
ferey@limsi.fr

P.E. GROS
LIMSI/CNRS
gros@limsi.fr

J. HÉRISSON
LIMSI/CNRS

herisson@limsi.fr

R. GHERBI
LIMSI/CNRS

gherbi@limsi.fr

Université Paris SUD XI
Bâtiments 508 et 502bis
91403 ORSAY (France)

(+33) 1 69 85 81 64

Abstract

Biologists are leading current research on genome
characterization (sequencing, alignment, transcription), providing
a huge quantity of raw data about many genome organisms.
Extracting knowledge from this raw data is an important process
for biologists, using usually data mining approaches. However, it
is difficult to deals with these genomic information using actual
bioinformatics data mining tools, because data are heterogeneous,
huge in quantity and geographically distributed. In this paper, we
present a new approach between data mining and virtual reality
visualization, called visual data mining. Indeed Virtual Reality
becomes ripe, with efficient display devices and intuitive
interaction in an immersive context. Moreover, biologists use to
work with 3D representation of their molecules, but in a desktop
context. We present a software solution, Genome3DExplorer,
which addresses the problem of genomic data visualization, of
scene management and interaction. This solution is based on a
well-adapted graphical and interaction paradigm, where local and
global topological characteristics of data are easily visible, on the
contrary to traditional genomic database browsers, always
focused on the zoom and details level.

CR Categories: H.5.1 [Information interfaces and presentation]:
Multimedia Information Systems – Artificial, augmented, and
virtual realities. I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Virtual reality. J.3 [Life and Medical
Sciences]: Biology and genetics.

Keywords: Virtual Reality, Immersive Exploration, Human-
Computer Interaction, Genomic Data, Graph-based Visualization.

1. Introduction

The last years witnessed a continued growth of the amount of data
being stored in biologic databanks. Often the data sets are
becoming so huge, that make them difficult to exploit.

Extracting knowledge from this raw data is an important process
for biologists, using usually data mining approaches. However, it
is difficult to deals with this genomic information using actual
bioinformatics data mining tools, because data becomes very huge
in quantity. For example the capacity of DNA microarray data
increased by thousand in several years. Even the best
bioinformatics visual data mining tools on this kind of data, such
as the innovative and famous hierarchical visual clustering of
Eisen et al. [1998] do not achieve to deal with this size increasing.
The advances in virtual reality and data visualization have thus
creating increasing need for graphical tools and techniques to aid
in large genomic data analysis. For example, the limit of the
desktop context in the Eisen’s solution, leaded Kano et al. [2002]
to adapt this paradigm into an immersive context. New solutions
were developed in order to deal other kind of huge data, such as
huge molecule. ADN-Viewer [Gherbi. and Hérisson 2002] exploits
the advantages of a virtual context with large display, to deals
with huge nucleic molecule, and offers biologists a new
representation of their huge DNA sequences, by representing its
predicted 3D architecture, according to it textual sequence (list of
A, C, G, T) and biophysical model. Sharma et al [2002] proposed
Atomsviewer, a similar solution in an immersive context, in order
to explore billion-atom molecules. However, there are other kinds
of genomic information relating to genes or molecules, recorded
in structured format within many genomic databanks. Sequence
World [Rojdestvenski et al. 2000] proposes the first solution in an
immersive context, in order to explore this kind of huge factual
genomic databanks. Nevertheless, and this solution deals only
with annotated gene sequence databanks such as GenBank,
solution, and does not address the problem of heterogeneity.

As Sequence Word, this paper presents a visual mining approach,
in an immersive context. However, our solution allows biologists
to explore and manage huge and heterogeneous genomic data, not
only annotated sequence databanks. Our solution is based on a
well-adapted graphical and interaction paradigm for genomic
data, where global topological characteristics of data are easily
visible, on the contrary to traditional genomic database browsers,
always focused on the zoom and details level. First, we present in
how we address the problem of the format heterogeneity of this
kind of databases, in order to explore them with a common
visualization paradigm. We explain then how our software deals
with huge genomic data, using a specific data representation, an
immersive context and simple scene management. Finally, we
present some results and experiments produced by
Genome3DExplorer, leaded by biologists on various sets of
biological data.

Fewer Words, More Examples

George Candea Principles of Computer Systems

I would have written a shorter letter,
but I did not have the time.

(Blaise Pascal, Provincial Letters # XVI)

Someone once asked President
Woodrow Wilson how long it took him
to prepare a speech.

“It depends. If I am to speak ten
minutes, I need a week for preparation;
if fifteen minutes, three days;
if half an hour, two days;
if an hour, I am ready now.”

(Josephus Daniels, The Wilson Era: Years of War
and After 1917-1923)

Making Clear Graphs and Tables

George Candea Principles of Computer Systems

Clear Graphs/Tables

George Candea Principles of Computer Systems

1 graph/table = 1 story

Clear Graphs

George Candea Principles of Computer Systems

1 2 3 4 5 6

10

20

30

40

Time

B
ac

te
ria

Time from start of culture

Clear Graphs

George Candea Principles of Computer Systems

1 2 3 4 5 6

10

20

30

40
N

r.
of

 b
ac

te
ria

Time from start of culture (hours)

Clear Graphs

George Candea Principles of Computer Systems

N
r.

of
 B

ac
te

ria
 (t

ho
us

an
ds

)

1 2 3 4 5 6

10

20

30

40

Time from start of culture (hours)

Clear Graphs

George Candea Principles of Computer Systems

N
r.

of
 B

ac
te

ria
 (t

ho
us

an
ds

)

1 2 3 4 5 6

Growth of Vibrio cholerae in 0.9% NaCl solution at 22 °C

10

20

30

40

Time from start of culture (hours)

Clear Graphs

George Candea Principles of Computer Systems

N
r.

of
 B

ac
te

ria
 (t

ho
us

an
ds

)

1 2 3 4 5 6

Growth of Vibrio cholerae in 0.9% NaCl solution at 22 °C

10

20

30

40
22° C
18° C

George Candea Principles of Computer Systems

because our current libVig prototype does not yet provide
primitives for regular expression matching or cryptography
(see §7 for a discussion). For each NF, we wrote a full specifi-
cation of its behavior based on published standards and used
Vigor to prove that the NF correctly implements that spec.
§6.4 provides details on the effort involved and spec sizes.

Name Description Class of NFs

VigNAT Network address translator Per-flow state
Header rewriting

VigBr Eth bridge with MAC learning Packet duplication

VigLB Load balancer
(implements Maglev[14] algo)

Per-flow state
Consistent hashing

VigPol Traffic policer
(rate-limits traffic by source IP)

Per-flow state
Fine-grained timing

VigFw Firewall (blocks ext. connections) Per-flow state
Table 1. The NFs we developed and verified with Vigor.

For every row in Table 1, all software is verified except
for the Vigor toolchain, the GRUB boot loader and NFOS
initialization code, and compilers. Table 2 shows the size
in LOC of each layer of the Vigor stack that is verified. As
explained in §4, the entire stack is mechanically verified,
except for ∼350 LOC of assembly and C, whose correctness
is argued by hand [47]. We reiterate that we could replace
GRUB with a formally verified boot loader [11] and thus
eliminate it from the TCB.

Stack layer Lines of code
VigNAT VigBr VigLB
VigPol VigFw

969 815 850
725 754

libVig 1,674
KLEE-uClibc (libc) 60,556

DPDK 62,380
Ixgbe Driver 24,211

Operating system (NFOS) 1,958

Table 2. Size of each layer in the Vigor stack.

Table 3 shows the time it takes to verify the NFs. We
measured three scenarios: verifying just the NF code against
the full spec, verifying the NF together with DPDK, driver,
and libC, and finally adding NFOS to verify the entire soft-
ware stack. The difference between verifying with or without
NFOS is negligible (± 20 sec), so we report the first and
third scenarios only. Total verification time is the sum of the
time for exhaustive symbolic execution to obtain the symbolic
traces (columns 2+3) plus the time to validate all the traces
(columns 4+5 multiplied by column 6). We report validation
time as # of traces× per-trace validation time because valida-
tion is an “embarrassingly” parallel task, so total completion
time depends linearly on the number of thread contexts avail-
able. The reported number of symbolic traces corresponds
to code paths analyzed after the various optimizing analyses

done by Vigor (see §3), such as loop havoc-ing; without these
optimizations, the number of traces would be infinite.

Verification time is dominated by full-stack verification, in
particular the trace validation step. VigLB has significantly
higher per-trace validation time than the other NFs. This
is partly because VigLB traces make more calls to libVig—
unlike the other NFs, VigLB employs two different maps, one
for flows and one for backends. VigLB traces also trigger sev-
eral slow-path behaviors in VeriFast, as used by the Validator:
it struggles to check that each call made by VigLB honors
the pre-conditions in the corresponding contract. Still, trace
validation completes in ∼1.5 hours on our test machine.

NF
Symbolic execution time # of traces Per-trace

validation
time (avg)

NF
only

with rest
of stack

NF
only

with rest
of stack

VigNAT 7 sec +8 min 54 +434 × 88 sec
VigBr 7 sec +10 min 69 +542 × 80 sec
VigLB 23 sec +26 min 146 +1,190 × 219 sec
VigPol 14 sec +6 min 37 +272 × 82 sec
VigFw 6 sec +7 min 43 +326 × 88 sec

Table 3. Verification statistics.

For the verification measurements, we used a setup consist-
ing of Intel DPDK v.17.11 for the packet I/O, with the ixgbe
driver for the Intel 82599ES NIC. We ran the verification on
a dual-socket Intel Xeon Gold 6132 machine @ 2.6 GHz,
providing a total of 28 cores (56 thread contexts). Full-stack
verification consumed <700 GB of DRAM, and verifying
just the NF took < 2 GB; the machine had 1.48 TB available.
Each NF was configured with table sizes of 65,536 entries.
Verifying the NF code alone takes a few minutes on our

machine, so it could be done regularly as part of continuous
integration or in a post-commit hook. For most NFs, verify-
ing the full software stack takes <1 hour on our machine,
so doing it at least once per release cycle is reasonable. It
is, however, possible to drastically speed up the validation
phase through parallelization, since each trace can be vali-
dated independently from all others. Validating the traces on
a cluster with hundreds or thousands of cores would lower the
verification time of the full NF stack to minutes or seconds,
making it practical to do after every commit.
In summary, we developed and verified five varied and

representative NFs with Vigor, thus showing that the Vigor
approach generalizes to multiple kinds of NFs. Verification
time matches well the patterns of modern software develop-
ment. We therefore conclude that Vigor can provide practical
push-button, full-stack verification for NFs.

6.2 Does verification have tangible benefits?
One of formal verification’s greatest promises is that it pre-
vents all bugs from making it into released code. Since Vigor
verifies both semantic properties and low-level properties like
memory safety, it is able to identify both high-level bugs (e.g.,

9

1674
60556

62380
24211
1958

George Candea Principles of Computer Systems

because our current libVig prototype does not yet provide
primitives for regular expression matching or cryptography
(see §7 for a discussion). For each NF, we wrote a full specifi-
cation of its behavior based on published standards and used
Vigor to prove that the NF correctly implements that spec.
§6.4 provides details on the effort involved and spec sizes.

Name Description Class of NFs

VigNAT Network address translator Per-flow state
Header rewriting

VigBr Eth bridge with MAC learning Packet duplication

VigLB Load balancer
(implements Maglev[14] algo)

Per-flow state
Consistent hashing

VigPol Traffic policer
(rate-limits traffic by source IP)

Per-flow state
Fine-grained timing

VigFw Firewall (blocks ext. connections) Per-flow state
Table 1. The NFs we developed and verified with Vigor.

For every row in Table 1, all software is verified except
for the Vigor toolchain, the GRUB boot loader and NFOS
initialization code, and compilers. Table 2 shows the size
in LOC of each layer of the Vigor stack that is verified. As
explained in §4, the entire stack is mechanically verified,
except for ∼350 LOC of assembly and C, whose correctness
is argued by hand [47]. We reiterate that we could replace
GRUB with a formally verified boot loader [11] and thus
eliminate it from the TCB.

Stack layer Lines of code
VigNAT VigBr VigLB
VigPol VigFw

969 815 850
725 754

libVig 1,674
KLEE-uClibc (libc) 60,556

DPDK 62,380
Ixgbe Driver 24,211

Operating system (NFOS) 1,958

Table 2. Size of each layer in the Vigor stack.

Table 3 shows the time it takes to verify the NFs. We
measured three scenarios: verifying just the NF code against
the full spec, verifying the NF together with DPDK, driver,
and libC, and finally adding NFOS to verify the entire soft-
ware stack. The difference between verifying with or without
NFOS is negligible (± 20 sec), so we report the first and
third scenarios only. Total verification time is the sum of the
time for exhaustive symbolic execution to obtain the symbolic
traces (columns 2+3) plus the time to validate all the traces
(columns 4+5 multiplied by column 6). We report validation
time as # of traces× per-trace validation time because valida-
tion is an “embarrassingly” parallel task, so total completion
time depends linearly on the number of thread contexts avail-
able. The reported number of symbolic traces corresponds
to code paths analyzed after the various optimizing analyses

done by Vigor (see §3), such as loop havoc-ing; without these
optimizations, the number of traces would be infinite.

Verification time is dominated by full-stack verification, in
particular the trace validation step. VigLB has significantly
higher per-trace validation time than the other NFs. This
is partly because VigLB traces make more calls to libVig—
unlike the other NFs, VigLB employs two different maps, one
for flows and one for backends. VigLB traces also trigger sev-
eral slow-path behaviors in VeriFast, as used by the Validator:
it struggles to check that each call made by VigLB honors
the pre-conditions in the corresponding contract. Still, trace
validation completes in ∼1.5 hours on our test machine.

NF
Symbolic execution time # of traces Per-trace

validation
time (avg)

NF
only

with rest
of stack

NF
only

with rest
of stack

VigNAT 7 sec +8 min 54 +434 × 88 sec
VigBr 7 sec +10 min 69 +542 × 80 sec
VigLB 23 sec +26 min 146 +1,190 × 219 sec
VigPol 14 sec +6 min 37 +272 × 82 sec
VigFw 6 sec +7 min 43 +326 × 88 sec

Table 3. Verification statistics.

For the verification measurements, we used a setup consist-
ing of Intel DPDK v.17.11 for the packet I/O, with the ixgbe
driver for the Intel 82599ES NIC. We ran the verification on
a dual-socket Intel Xeon Gold 6132 machine @ 2.6 GHz,
providing a total of 28 cores (56 thread contexts). Full-stack
verification consumed <700 GB of DRAM, and verifying
just the NF took < 2 GB; the machine had 1.48 TB available.
Each NF was configured with table sizes of 65,536 entries.
Verifying the NF code alone takes a few minutes on our

machine, so it could be done regularly as part of continuous
integration or in a post-commit hook. For most NFs, verify-
ing the full software stack takes <1 hour on our machine,
so doing it at least once per release cycle is reasonable. It
is, however, possible to drastically speed up the validation
phase through parallelization, since each trace can be vali-
dated independently from all others. Validating the traces on
a cluster with hundreds or thousands of cores would lower the
verification time of the full NF stack to minutes or seconds,
making it practical to do after every commit.
In summary, we developed and verified five varied and

representative NFs with Vigor, thus showing that the Vigor
approach generalizes to multiple kinds of NFs. Verification
time matches well the patterns of modern software develop-
ment. We therefore conclude that Vigor can provide practical
push-button, full-stack verification for NFs.

6.2 Does verification have tangible benefits?
One of formal verification’s greatest promises is that it pre-
vents all bugs from making it into released code. Since Vigor
verifies both semantic properties and low-level properties like
memory safety, it is able to identify both high-level bugs (e.g.,

9

George Candea Principles of Computer Systems

because our current libVig prototype does not yet provide
primitives for regular expression matching or cryptography
(see §7 for a discussion). For each NF, we wrote a full specifi-
cation of its behavior based on published standards and used
Vigor to prove that the NF correctly implements that spec.
§6.4 provides details on the effort involved and spec sizes.

Name Description Class of NFs

VigNAT Network address translator Per-flow state
Header rewriting

VigBr Eth bridge with MAC learning Packet duplication

VigLB Load balancer
(implements Maglev[14] algo)

Per-flow state
Consistent hashing

VigPol Traffic policer
(rate-limits traffic by source IP)

Per-flow state
Fine-grained timing

VigFw Firewall (blocks ext. connections) Per-flow state
Table 1. The NFs we developed and verified with Vigor.

For every row in Table 1, all software is verified except
for the Vigor toolchain, the GRUB boot loader and NFOS
initialization code, and compilers. Table 2 shows the size
in LOC of each layer of the Vigor stack that is verified. As
explained in §4, the entire stack is mechanically verified,
except for ∼350 LOC of assembly and C, whose correctness
is argued by hand [47]. We reiterate that we could replace
GRUB with a formally verified boot loader [11] and thus
eliminate it from the TCB.

Stack layer Lines of code
VigNAT VigBr VigLB
VigPol VigFw

969 815 850
725 754

libVig 1,674
KLEE-uClibc (libc) 60,556

DPDK 62,380
Ixgbe Driver 24,211

Operating system (NFOS) 1,958

Table 2. Size of each layer in the Vigor stack.

Table 3 shows the time it takes to verify the NFs. We
measured three scenarios: verifying just the NF code against
the full spec, verifying the NF together with DPDK, driver,
and libC, and finally adding NFOS to verify the entire soft-
ware stack. The difference between verifying with or without
NFOS is negligible (± 20 sec), so we report the first and
third scenarios only. Total verification time is the sum of the
time for exhaustive symbolic execution to obtain the symbolic
traces (columns 2+3) plus the time to validate all the traces
(columns 4+5 multiplied by column 6). We report validation
time as # of traces× per-trace validation time because valida-
tion is an “embarrassingly” parallel task, so total completion
time depends linearly on the number of thread contexts avail-
able. The reported number of symbolic traces corresponds
to code paths analyzed after the various optimizing analyses

done by Vigor (see §3), such as loop havoc-ing; without these
optimizations, the number of traces would be infinite.

Verification time is dominated by full-stack verification, in
particular the trace validation step. VigLB has significantly
higher per-trace validation time than the other NFs. This
is partly because VigLB traces make more calls to libVig—
unlike the other NFs, VigLB employs two different maps, one
for flows and one for backends. VigLB traces also trigger sev-
eral slow-path behaviors in VeriFast, as used by the Validator:
it struggles to check that each call made by VigLB honors
the pre-conditions in the corresponding contract. Still, trace
validation completes in ∼1.5 hours on our test machine.

NF
Symbolic execution time # of traces Per-trace

validation
time (avg)

NF
only

with rest
of stack

NF
only

with rest
of stack

VigNAT 7 sec +8 min 54 +434 × 88 sec
VigBr 7 sec +10 min 69 +542 × 80 sec
VigLB 23 sec +26 min 146 +1,190 × 219 sec
VigPol 14 sec +6 min 37 +272 × 82 sec
VigFw 6 sec +7 min 43 +326 × 88 sec

Table 3. Verification statistics.

For the verification measurements, we used a setup consist-
ing of Intel DPDK v.17.11 for the packet I/O, with the ixgbe
driver for the Intel 82599ES NIC. We ran the verification on
a dual-socket Intel Xeon Gold 6132 machine @ 2.6 GHz,
providing a total of 28 cores (56 thread contexts). Full-stack
verification consumed <700 GB of DRAM, and verifying
just the NF took < 2 GB; the machine had 1.48 TB available.
Each NF was configured with table sizes of 65,536 entries.
Verifying the NF code alone takes a few minutes on our

machine, so it could be done regularly as part of continuous
integration or in a post-commit hook. For most NFs, verify-
ing the full software stack takes <1 hour on our machine,
so doing it at least once per release cycle is reasonable. It
is, however, possible to drastically speed up the validation
phase through parallelization, since each trace can be vali-
dated independently from all others. Validating the traces on
a cluster with hundreds or thousands of cores would lower the
verification time of the full NF stack to minutes or seconds,
making it practical to do after every commit.
In summary, we developed and verified five varied and

representative NFs with Vigor, thus showing that the Vigor
approach generalizes to multiple kinds of NFs. Verification
time matches well the patterns of modern software develop-
ment. We therefore conclude that Vigor can provide practical
push-button, full-stack verification for NFs.

6.2 Does verification have tangible benefits?
One of formal verification’s greatest promises is that it pre-
vents all bugs from making it into released code. Since Vigor
verifies both semantic properties and low-level properties like
memory safety, it is able to identify both high-level bugs (e.g.,

9

• Use font faces and sizes consistently

Explain Your Data

George Candea Principles of Computer Systems

The purpose of computing is insight,
not numbers.

(Richard Hamming, Numerical Methods for
Scientists and Engineers, 1962)

Explain Your Data

George Candea Principles of Computer Systems

 64 threads, 8 locks, 64 signatures, siglen 2

 0.1

 1

 10

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δin [microseconds]

δout=1,000 µsec

Java Baseline
Java Dimmunix

 0.1

 1

 10

 100

 1000

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δout [microseconds]

δout=1,000 µsec

δin=1 µsec

Java Baseline
Java Dimmunix

Figure 6: Variation of lock throughput as a function of
δin and δout for Java; the pthreads version is similar.

Note that a direct comparison of overhead between
Dimmunix and the baseline is somewhat unfair to
Dimmunix, because non-immunized programs deadlock
and stop running, whereas immunized ones continue run-
ning and doing useful work.
Impact of history size and matching depth: The per-
formance penalty incurred by matching current execu-
tions against signatures from history should increase
with the size of the history (i.e., number of signatures) as
well as the depth at which signatures are matched with
current stacks. Average length of a signature (i.e., aver-
age number of threads involved in the captured deadlock)
also influences matching time, but the vast majority of
deadlocks in practice are limited to two threads [16], so
variation with signature size is not that interesting.
In addition to the matching overhead, as more and

more deadlocks are discovered in the program, the pro-
gram must be serialized increasingly more in order to be
deadlock-safe (i.e., there are more deadlocks to avoid)—
our overhead measurements include both effects.
We show in Figure 7 the performance overhead intro-

duced by varying history size from 2-256 signatures. The
overhead introduced by history size and matching depth
is relatively constant across this range, which means that
searching through history is a negligible component of
Dimmunix overhead.
Breakdown of overhead: Having seen the impact of
number of threads, history size, and matching depth,
we profiled the overhead, to understand which parts of
Dimmunix contribute the most. For this, we selec-
tively disabled parts of Dimmunix and measured the lock

 7900

 8000

 8100

 8200

 8300

 8400

 8500

 2 4 8 16 32 64 128 256

Lo
ck

 O
pe

ra
tio

ns
 /

Se
co

nd

Number of signatures in history

64 threads, 8 locks, δin=1 µsec, δout=1 msec

pthreads Baseline
pthreads Dimmunix (match depth=4)
pthreads Dimmunix (match depth=8)

Figure 7: Lock throughput as a function of history size
and matching depth for pthreads. Java results are similar.

throughput. First we measured the overhead introduced
by the base instrumentation, then we added the data
structure lookups and updates performed by request in
the avoidance code, then we ran full Dimmunix, includ-
ing avoidance.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512 1024

O
ve

rh
ea

d
[%

]

Number of threads

 64 sigs, siglen 2, 8 locks, δin=1 µsec, δout=1 msec

Instrumentation
Data Structure Updates

Avoidance

Figure 8: Breakdown of overhead for Java Dimmunix.

The results for Java are shown in Figure 8—the bulk of
the overhead is introduced by the data structure lookups
and updates. For pthreads, the trend is similar, except
that the dominant fraction of overhead is introduced by
the instrumentation code. The main reason is that the
changes to the pthreads library interfere with the fastpath
of the pthreads mutex: it first performs a compare-and-
swap (CAS) and only if that is unsuccessful does it make
a system call. Our current implementation causes that
CAS to be unsuccessful with higher probability.

7.3 False Positives
Any approach that tries to predict the future with the pur-
pose of avoiding bad outcomes suffers from false posi-
tives, i.e., wrongly predicting that the bad outcome will
occur. Dimmunix is no exception. False positives can
arise when signatures are matched too shallowly, or when
the lock order in a pattern depends on inputs, program
state, etc. Our microbenchmark does not have the latter
type of dependencies.

12

Use Text to Give Context and Draw Conclusions

George Candea Principles of Computer Systems

 64 threads, 8 locks, 64 signatures, siglen 2

 0.1

 1

 10

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δin [microseconds]

δout=1,000 µsec

Java Baseline
Java Dimmunix

 0.1

 1

 10

 100

 1000

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δout [microseconds]

δout=1,000 µsec

δin=1 µsec

Java Baseline
Java Dimmunix

Figure 6: Variation of lock throughput as a function of
δin and δout for Java; the pthreads version is similar.

Note that a direct comparison of overhead between
Dimmunix and the baseline is somewhat unfair to
Dimmunix, because non-immunized programs deadlock
and stop running, whereas immunized ones continue run-
ning and doing useful work.
Impact of history size and matching depth: The per-
formance penalty incurred by matching current execu-
tions against signatures from history should increase
with the size of the history (i.e., number of signatures) as
well as the depth at which signatures are matched with
current stacks. Average length of a signature (i.e., aver-
age number of threads involved in the captured deadlock)
also influences matching time, but the vast majority of
deadlocks in practice are limited to two threads [16], so
variation with signature size is not that interesting.
In addition to the matching overhead, as more and

more deadlocks are discovered in the program, the pro-
gram must be serialized increasingly more in order to be
deadlock-safe (i.e., there are more deadlocks to avoid)—
our overhead measurements include both effects.
We show in Figure 7 the performance overhead intro-

duced by varying history size from 2-256 signatures. The
overhead introduced by history size and matching depth
is relatively constant across this range, which means that
searching through history is a negligible component of
Dimmunix overhead.
Breakdown of overhead: Having seen the impact of
number of threads, history size, and matching depth,
we profiled the overhead, to understand which parts of
Dimmunix contribute the most. For this, we selec-
tively disabled parts of Dimmunix and measured the lock

 7900

 8000

 8100

 8200

 8300

 8400

 8500

 2 4 8 16 32 64 128 256

Lo
ck

 O
pe

ra
tio

ns
 /

Se
co

nd

Number of signatures in history

64 threads, 8 locks, δin=1 µsec, δout=1 msec

pthreads Baseline
pthreads Dimmunix (match depth=4)
pthreads Dimmunix (match depth=8)

Figure 7: Lock throughput as a function of history size
and matching depth for pthreads. Java results are similar.

throughput. First we measured the overhead introduced
by the base instrumentation, then we added the data
structure lookups and updates performed by request in
the avoidance code, then we ran full Dimmunix, includ-
ing avoidance.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512 1024

O
ve

rh
ea

d
[%

]

Number of threads

 64 sigs, siglen 2, 8 locks, δin=1 µsec, δout=1 msec

Instrumentation
Data Structure Updates

Avoidance

Figure 8: Breakdown of overhead for Java Dimmunix.

The results for Java are shown in Figure 8—the bulk of
the overhead is introduced by the data structure lookups
and updates. For pthreads, the trend is similar, except
that the dominant fraction of overhead is introduced by
the instrumentation code. The main reason is that the
changes to the pthreads library interfere with the fastpath
of the pthreads mutex: it first performs a compare-and-
swap (CAS) and only if that is unsuccessful does it make
a system call. Our current implementation causes that
CAS to be unsuccessful with higher probability.

7.3 False Positives
Any approach that tries to predict the future with the pur-
pose of avoiding bad outcomes suffers from false posi-
tives, i.e., wrongly predicting that the bad outcome will
occur. Dimmunix is no exception. False positives can
arise when signatures are matched too shallowly, or when
the lock order in a pattern depends on inputs, program
state, etc. Our microbenchmark does not have the latter
type of dependencies.

12

 64 threads, 8 locks, 64 signatures, siglen 2

 0.1

 1

 10

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δin [microseconds]

δout=1,000 µsec

Java Baseline
Java Dimmunix

 0.1

 1

 10

 100

 1000

0 1 10 100 1,000 10,000Lo
ck

 O
pe

ra
tio

ns
 /

M
illi

se
co

nd

δout [microseconds]

δout=1,000 µsec

δin=1 µsec

Java Baseline
Java Dimmunix

Figure 6: Variation of lock throughput as a function of
δin and δout for Java; the pthreads version is similar.

Note that a direct comparison of overhead between
Dimmunix and the baseline is somewhat unfair to
Dimmunix, because non-immunized programs deadlock
and stop running, whereas immunized ones continue run-
ning and doing useful work.
Impact of history size and matching depth: The per-
formance penalty incurred by matching current execu-
tions against signatures from history should increase
with the size of the history (i.e., number of signatures) as
well as the depth at which signatures are matched with
current stacks. Average length of a signature (i.e., aver-
age number of threads involved in the captured deadlock)
also influences matching time, but the vast majority of
deadlocks in practice are limited to two threads [16], so
variation with signature size is not that interesting.
In addition to the matching overhead, as more and

more deadlocks are discovered in the program, the pro-
gram must be serialized increasingly more in order to be
deadlock-safe (i.e., there are more deadlocks to avoid)—
our overhead measurements include both effects.
We show in Figure 7 the performance overhead intro-

duced by varying history size from 2-256 signatures. The
overhead introduced by history size and matching depth
is relatively constant across this range, which means that
searching through history is a negligible component of
Dimmunix overhead.
Breakdown of overhead: Having seen the impact of
number of threads, history size, and matching depth,
we profiled the overhead, to understand which parts of
Dimmunix contribute the most. For this, we selec-
tively disabled parts of Dimmunix and measured the lock

 7900

 8000

 8100

 8200

 8300

 8400

 8500

 2 4 8 16 32 64 128 256

Lo
ck

 O
pe

ra
tio

ns
 /

Se
co

nd

Number of signatures in history

64 threads, 8 locks, δin=1 µsec, δout=1 msec

pthreads Baseline
pthreads Dimmunix (match depth=4)
pthreads Dimmunix (match depth=8)

Figure 7: Lock throughput as a function of history size
and matching depth for pthreads. Java results are similar.

throughput. First we measured the overhead introduced
by the base instrumentation, then we added the data
structure lookups and updates performed by request in
the avoidance code, then we ran full Dimmunix, includ-
ing avoidance.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512 1024

O
ve

rh
ea

d
[%

]

Number of threads

 64 sigs, siglen 2, 8 locks, δin=1 µsec, δout=1 msec

Instrumentation
Data Structure Updates

Avoidance

Figure 8: Breakdown of overhead for Java Dimmunix.

The results for Java are shown in Figure 8—the bulk of
the overhead is introduced by the data structure lookups
and updates. For pthreads, the trend is similar, except
that the dominant fraction of overhead is introduced by
the instrumentation code. The main reason is that the
changes to the pthreads library interfere with the fastpath
of the pthreads mutex: it first performs a compare-and-
swap (CAS) and only if that is unsuccessful does it make
a system call. Our current implementation causes that
CAS to be unsuccessful with higher probability.

7.3 False Positives
Any approach that tries to predict the future with the pur-
pose of avoiding bad outcomes suffers from false posi-
tives, i.e., wrongly predicting that the bad outcome will
occur. Dimmunix is no exception. False positives can
arise when signatures are matched too shallowly, or when
the lock order in a pattern depends on inputs, program
state, etc. Our microbenchmark does not have the latter
type of dependencies.

12

Time since boot-up (days)

Dummy Graphs

George Candea Principles of Computer Systems

M
iB

 o
f m

em
or

y
le

ak
ed

1 2 3 4 5 6

10

20

30

40

Dummy data

George Candea Principles of Computer Systems

Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems

Padmanabhan Pillai and Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, MI 48109-2122, U.S.A.
pillai,kgshin @eecs.umich.edu

ABSTRACT
In recent years, there has been a rapid and wide spread of non-
traditional computing platforms, especially mobile and portable com-
puting devices. As applications become increasingly sophisticated
and processing power increases, the most serious limitation on these
devices is the available battery life. Dynamic Voltage Scaling (DVS)
has been a key technique in exploiting the hardware characteristics
of processors to reduce energy dissipation by lowering the supply
voltage and operating frequency. The DVS algorithms are shown to
be able to make dramatic energy savings while providing the nec-
essary peak computation power in general-purpose systems. How-
ever, for a large class of applications in embedded real-time sys-
tems like cellular phones and camcorders, the variable operating
frequency interferes with their deadline guarantee mechanisms, and
DVS in this context, despite its growing importance, is largely
overlooked/under-developed. To provide real-time guarantees, DVS
must consider deadlines and periodicity of real-time tasks, requir-
ing integration with the real-time scheduler. In this paper, we present
a class of novel algorithms called real-time DVS (RT-DVS) that
modify the OS’s real-time scheduler and task management service
to provide significant energy savings while maintaining real-time
deadline guarantees. We show through simulations and a working
prototype implementation that these RT-DVS algorithms closely
approach the theoretical lower bound on energy consumption, and
can easily reduce energy consumption 20% to 40% in an embedded
real-time system.

1. INTRODUCTION
Computation and communication have been steadily moving to-
ward mobile and portable platforms/devices. This is very evident
in the growth of laptop computers and PDAs, but is also occur-
ring in the embedded world. With continued miniaturization and
increasing computation power, we see ever growing use of power-

The work reported in this paper is supported in part by the
U.S. Airforce Office of Scientific Research under Grant AFOSR
F49620-01-1-0120.

ful microprocessors running sophisticated, intelligent control soft-
ware in a vast array of devices including digital camcorders, cellu-
lar phones, and portable medical devices.

Unfortunately, there is an inherent conflict in the design goals be-
hind these devices: as mobile systems, they should be designed to
maximize battery life, but as intelligent devices, they need powerful
processors, which consume more energy than those in simpler de-
vices, thus reducing battery life. In spite of continuous advances in
semiconductor and battery technologies that allow microprocessors
to provide much greater computation per unit of energy and longer
total battery life, the fundamental tradeoff between performance
and battery life remains critically important.

Recently, significant research and development efforts have been
made on Dynamic Voltage Scaling (DVS) [2, 4, 7, 8, 12, 19, 21,
22, 23, 24, 25, 26, 28, 30]. DVS tries to address the tradeoff
between performance and battery life by taking into account two
important characteristics of most current computer systems: (1)
the peak computing rate needed is much higher than the average
throughput that must be sustained; and (2) the processors are based
on CMOS logic. The first characteristic effectively means that high
performance is needed only for a small fraction of the time, while
for the rest of the time, a low-performance, low-power processor
would suffice. We can achieve the low performance by simply
lowering the operating frequency of the processor when the full
speed is not needed. DVS goes beyond this and scales the oper-
ating voltage of the processor along with the frequency. This is
possible because static CMOS logic, used in the vast majority of
microprocessors today, has a voltage-dependent maximum operat-
ing frequency, so when used at a reduced frequency, the processor
can operate at a lower supply voltage. Since the energy dissipated
per cycle with CMOS circuitry scales quadratically to the supply
voltage () [2], DVS can potentially provide a very large
net energy savings through frequency and voltage scaling.

In time-constrained applications, often found in embedded systems
like cellular phones and digital video cameras, DVS presents a se-
rious problem. In these real-time embedded systems, one cannot
directly apply most DVS algorithms known to date, since chang-
ing the operating frequency of the processor will affect the exe-
cution time of the tasks and may violate some of the timeliness
guarantees. In this paper, we present several novel algorithms that
incorporate DVS into the OS scheduler and task management ser-
vices of a real-time embedded system, providing the energy sav-
ings of DVS while preserving deadline guarantees. This is in sharp

Conclusion

• Technical writing ≠ Lyrical writing

• Write iteratively (the way Picasso drew)

• Clean, recursive structure to ease reader’s load

• Avoid opinions, vagueness

• Reduce # of words, increase # of examples

• Clear graphs with explained data

George Candea Principles of Computer Systems

OP1 (Naming)

George Candea Principles of Computer Systems

In the current Internet, when a client wants to access some content, it first
contacts DNS to obtain an IP address for a service that serves the desired
content; only after this name lookup is complete can the client start
communicating with the target service and accessing the target content.

Assuming we can change the Internet architecture, is it possible to remove the
need for the client to do a separate name lookup in order to access the target
content?

Assume you can change the Internet architecture any way you want, e.g., you
can change the TCP/IP stack, the inter-domain routing protocol, the way
packet switches and routers operate, etc.

Assume that a client names content using a bit string of bounded length.  
(For example, a DNS name or a URL is a bit string of bounded length.)

