=PFL

POCS: Technical Writing

Prof. George Candea
School of Computer & Communication Sciences

There is too much stuff to read

Feed the reader reasons to
continue reading

Good tech writing
IS rare

Good tech writing
can be learned

Master the
language

"This is what writing a paper with a first-year PhD student is like"

http://users.auth.gr/ksiop/phd_funny/research_in_progress__funny/pic10.gif

... so | wait for you like a lonely house
till you will see me again and live in me.
Till then my windows ache.

(Pablo Neruda)

The performance of our cache becomes
tremendously small when the data is
accessed in a very adversarial manner.

(1st year PhD student)

Lyrica[wriu’ng

The dopamine signaling in the nucleus
accumbens of my basal forebrain is lower than

normal due to your physical absence.

The hit rate of the CPU cache drops by up
to 95% if programs consistently write to the
least-recently read memory address.

Technical writing

What? Towhom?

How to transfer efficiently?

Perfection must be reached by degrees;
she requires the slow hand of time.

(attributed to Voltaire)

The Writing Process

Perfection is finally attained not when there
IS no longer anything to add, but when there
IS no longer anything to take away.

(Antoine de Saint-Exupéry, “L’Avion”, Ch. 1)

December 5, 1945

e -

December 12, 1945

December 18, 1945

v - g - . \ » -
‘ \(‘) g y . -~
. -
‘ .
. //
\ L J
. » \] "
/3 '
\.
- »
» : 80
' '
» b o ’
- . |
Q . s o ;

December 22, 1945

1945

December 24,

i S—— . g

December 20, 94

December 28, 1945

January 2, 1946

January 5, 1946

January 10, 1946

January 17, 1946

It takes a lot of hard work to make something
simple, to truly understand the underlying
challenges and come up with elegant
solutions. You have to deeply understand the
essence of a product in order to be able to get
rid of the parts that are not essential.

Steve Jobs

The Writing Process

Perfection is finally attained not when there
IS no longer anything to add, but when there
IS no longer anything to take away.

(Antoine de Saint-Exupéry, L’Avion, Ch. 1)

Recursion in Technical Writing

Paper title

Paper abstract

Section title

1st paragraph: section absfract
Paragraph: topic sentence (abstract) + body
Paragraph: topic sentence (abstract) + body

Section conclusion

Section title

Paper conclusion

Abstract

Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL., JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction

Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].

The simplest mechanism used for synchronizing con-
current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
i1s waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.

Avoiding the introduction of deadlock bugs during de-
velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.

Even deadlock-free code is not guaranteed to execute
free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).

Debugging deadlocks is hard—merely seeing a dead-
lock happen does not mean the bug i1s easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].

We expect the deadlock challenge to persist and likely
become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.

In this paper, we introduce the notion of deadlock
immunity —a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.

In the rest of the paper we survey related work (§2),
give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Abstract

Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL., JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).

L Debugging deadlocks is hard—merely seeing a dead-
1

ock happen does not mean the bug is easy to fix.

Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].

Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers

We expect the deadlock challenge to persist and likely
become worse over time: On the one hand, software
systems continue getting larger and more complex. On

consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].

The simplest mechanism used for synchronizing con-
current accesses to shared data is the mutex lock. When

threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
i1s waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.

the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.

In this paper, we introduce the notion of deadlock
immunity —a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,

Avoiding the introduction of deadlock bugs during de-
velopment is challenging. Large software systems are

developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.

Even deadlock-free code 1s not guaranteed to execute
free of deadlocks once deployed in the field. Depen-

dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

a tool Tfor developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.

In the rest of the paper we survey related work (§2),
give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

Writing concurrent software 1s one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads.

The simplest mechanism used for synchronizing con-
current accesses to shared data is the mutex lock.

Avoiding the introduction of deadlock bugs during de-
velopment is challenging.

Even deadlock-free code 1s not guaranteed to execute
free of deadlocks once deployed 1n the field.

Debugging deadlocks 1s hard —merely seeing a dead-
lock happen does not mean the bug 1s easy to fix.

We expect the deadlock challenge to persist and likely
become worse over time

In this paper, we introduce the notion of deadlock
immunity —a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks.

Abstract

Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL., JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction

Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].

The simplest mechanism used for synchronizing con-
current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
i1s waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.

Avoiding the introduction of deadlock bugs during de-
velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.

Even deadlock-free code is not guaranteed to execute
free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).

Debugging deadlocks is hard—merely seeing a dead-
lock happen does not mean the bug i1s easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].

We expect the deadlock challenge to persist and likely
become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.

In this paper, we introduce the notion of deadlock
immunity —a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.

In the rest of the paper we survey related work (§2),
give an overview of our system (§3-§4), present details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).

YUV IVVA VLD VIOV A uitvdativil VWwililvildvlu) & &1V pY YUl
threads cannot make torward progress, because each one
1S waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.

Avoiding the introduction of deadlock bugs during de-
velopment 1s challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes i1t hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, 1s not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings 1s still infeasible in practice for all but toy programs.

Even deadlock-free code 1s not guaranteed to execute
free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-

rect. Upgrading these libraries or runtimes can introduce

immunity —
by a givend
currences o
a tool tor d
tance from-
lock patters
tures 1ts sig
same patter
t0O 1mmuniz
deadlock. |
fend agains
and by softy

In the re:
g1ve an ovet
our techniqp
tations (36)
can be used

YUV IVVA VLD VIOV A uitvdativil VWwililvildvlu) & &1V pY YUl
threads cannot make torward progress, because each one
1S waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.

Avoiding the introduction of deadlock bugs during de-
velopment 1s challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes i1t hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, 1s not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings 1s still infeasible in practice for all but toy programs.

Even deadlock-free code 1s not guaranteed to execute
free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-

rect. Upgrading these libraries or runtimes can introduce

immunity —
by a given d
currences o
a tool tor d
tance from-
lock patters
tures 1ts sig
same patter
t0O 1mmuniz
deadlock. |
fend agains
and by softy

In the re:
g1ve an ovet
our techniqp
tations (36)
can be used

In the developing world 1.1 billion people still lack access to safe
drinking water, 2.6 billion do not have access to adequate sanitation
services, and more than 1.6 million deaths each year are traced to
waterborne diseases (mostly in children under five). All too often In
developing countries, water is costly or inaccessible to the poorest In
society, while the wealthy have it piped into their homes. In addition,
because of the infrastructure that is used to control water, whole seas
are being lost, rivers are running dry, millions of people have been
displaced to make room for reservoirs, groundwater aquifers are being
pumped down, and disputes over water have raised tensions from local
to international levels. Fresh water is a limiting resource in many parts
of the world and is certain to become even more so as the 21st century
unfolds.

(Wright and Boorse, Environmental Science, p. 247)

In the developing world 1.1 billion people still lack access to safe
drinking water, 2.6 billion do not have access to adequate sanitation
services, and more than 1.6 million deaths each year are traced to
waterborne diseases (mostly in children under five). All too often In
developing countries, water Is costly or inaccessible to the poorest In
society, while the wealthy have it piped into their homes. In addition,
because of the infrastructure that is used to control water, whole seas
are being lost, rivers are running dry, millions of people have been
displaced to make room for reservoirs, groundwater aquifers are being
pumped down, and disputes over water have raised tensions from local
to international levels. Fresh water Is a limiting resource in many parts
of the world and is certain to become even more so as the 21st century
unfolds.

(Wright and Boorse, Environmental Science, p. 247)

In colonial days, huge flocks of snowy egrets inhabited the coastal
wetlands and marshes of the southeastern United States. In the 1800s,
when fashion dictated fancy hats adorned with feathers, egrets and
other birds were hunted for their plumage. By the late 1800s, egrets
were almost extinct. In 1886, the newly formed National Audubon
Society began a press campaign to shame “feather wearers” and end
the practice. The campaign caught on, and gradually, attitudes
changed; new laws followed. Government policies that protect animals
from overharvesting are essential to keep species from the brink of
extinction. Even when cultural standards change due to the efforts of
individual groups (such as the National Audubon Society), laws and
policy measures must follow to ensure that endangered populations
remain protected. Since the 1800s, several important laws have been
passed to protect a wide variety of species.

(Wright and Boorse, Environmental Science: Toward a Sustainable Future, p. 150)

In colonial days, huge flocks of snowy egrets inhabited the coastal
wetlands and marshes of the southeastern United States. In the 1800s,
when fashion dictated fancy hats adorned with feathers, egrets and
other birds were hunted for their plumage. By the late 1800s, egrets
were almost extinct. In 1886, the newly formed National Audubon
Society began a press campaign to shame“feather wearers”and end the
practice.The campaign caught on, and gradually, attitudes changed;
new laws followed. Government policies that protect animals from
overharvesting are essential to keep species from the brink of
extinction. Even when cultural standards change due to the efforts of
individual groups (such as the National Audubon Society), laws and
policy measures must follow to ensure that endangered populations
remain protected. Since the 1800s, several important laws have been
passed to protect a wide variety of species.

(Wright and Boorse, Environmental Science: Toward a Sustainable Future, p. 150)

The National Cancer Institute (NCI) has taken a brute-force approach to
screening species for cancer-suppressing chemicals. NCI scientists
receive frozen samples of organisms from around the world, chop them
up, and separate them into a number of extracts, each probably
containing hundreds of components. These extracts are tested against
up to 60 different types of cancer cells for their efficacy in stopping or
slowing growth of the cancer. Promising extracts are then further
analyzed to determine their chemical nature, and chemicals in the
extract are tested singly to find the effective compound.This approach is
often referred to as the “grind 'em and find ‘'em” strategy.

(Belk and Maier, Biology, p. 334)

The National Cancer Institute (NCI) has taken a brute-force approach to
screening species for cancer-suppressing chemicals. NCI scientists
receive frozen samples of organisms from around the world, chop them
up, and separate them into a number of extracts, each probably
containing hundreds of components. These extracts are tested against
up to 60 different types of cancer cells for their efficacy in stopping or
slowing growth of the cancer. Promising extracts are then further
analyzed to determine their chemical nature, and chemicals in the
extract are tested singly to find the effective compound.This approach is
often referred to as the “grind 'em and find ‘'em” strategy.

(Belk and Maier, Biology, p. 334)

o Structure as topic + controlling idea

o topic = what the paragraphi i
* viewpoint = the direction the paragraphwill take
\ RCU locks are a good fit

+ for three reasons.

o Strike a balance between general and specific

The algorithm is mostly based on prior
work except for one novel detalil.

e Beclear

Almost 90% of Americans own cell phones [18],
leading the the wide spread of SMS-based attacks.

Un-marshalling RPC arguments requires three steps.

Paper title

Paper abstract

Section title

1st paragraph: section abstract
Paragraph: topic sentence + body
Paragraph: topic sentence + body

Section conclusion
Section title

Paper conclusion

Writing TiIps & Tricks

Keep Opinions to Yourself

Fact - citations

Statement = Result
\ T~ measurement

Opinion - ?°0°?

Keep Opinions to Yourself

Fact - citations

Statement = Result

Opinion - ?°0°?

Many researchers have considered this an
Important problem, but few solutions exist.

Maximum Clarity < No Vagueness

e Scientific writing instead of poetry

® precise, crystal clear

® arguments are objective, logical, not subject to interpretation
* Written text vs. idea in your head
* Text must withstand the scrutiny of a logician

e Consistency terminology

Clarity: Quantify

The performance of our cache becomes
tremendously small when the data is
accessed Iin a very adversarial manner.

The hit rate of the CPU cache drops by up
to 95% if programs consistently write to the
least-recently read memory address.

I HAVE THE ABILITY
TO QUANTIFY THE
UNQUANTIFIABLE.

THAT IS WHY
THEY CALL ME
DOGBERT THE

QUANTIFIER.

EIGHT
PEOPLE.

(

4 507 ©2007Scott Adams, Inc./Dist. by UFS, Inc

www.dilbert.com scottadams®aol.com

CGlarity: Avoid passive voice

The items are then shown in alphabetical
order.

The program then outputs the items to the
console in alphabetical order.

L TTT— —

The order of the items is alphabetical.

"A bar was walke@dnto by the passive voice.”

Glarity: Avoid reverse anthropomorphism

Then you send the packet to the server

Then the client application sends the
packet to the server.

Our file system recovers ...

S——

The client's file system recovers...

—

Glarity: Avoid hyperholae

We show greatly improved throughput.

S =
- ' o
>
’
| v
-

- b .
. o - ~ o - t
Y > A $: o+
ot o ;
4 TR -
N B " 4
h ¥ - s
X \ . M- RS R S
, . e o -
. . ‘
/Y A -
~O e
(4 oy
) 2]
e 3
.
»
\

"TREMENDOUS ISA TIIEMENIIIIIIS WORD

Glarity: Avoid hyperholae

We show greatly improved throughput.

We show a 26% to 77% improvement in
throughput.

Abstract

Biologists are leading current research on genome
characterization (sequencing, alignment, transcription), providing
a huge quantity of raw data about many genome organisms.
Extracting knowledge from this raw data 1s an important process
for biologists, using usually data mining approaches. However, it
1s difficult to deals with these genomic information using actual
bioinformatics data mining tools, because data are heterogeneous,
huge in quantity and geographically distributed. In this paper, we
present a new approach between data mining and virtual reality
visualization, called visual data mining. Indeed Virtual Reality
becomes ripe, with efficient display devices and intuitive
interaction in an immersive context. Moreover, biologists use to
work with 3D representation of their molecules, but in a desktop
context. We present a software solution, Genome3DExplorer,
which addresses the problem of genomic data visualization, of
scene management and interaction. This solution is based on a
well-adapted graphical and interaction paradigm, where local and
global topological characteristics of data are easily visible, on the
contrary to traditional genomic database browsers, always
focused on the zoom and details level.

CR Categories: H.5.1 [Information interfaces and presentation]:
Multimedia Information Systems — Artificial, augmented, and
virtual realities. 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Virtual reality. J.3 [Life and Medical
Sciences]: Biology and genetics.

Keywords: Virtual Reality, Immersive Exploration, Human-
Computer Interaction, Genomic Data, Graph-based Visualization.

1. Introduction

The last years witnessed a continued growth of the amount of data
being stored in biologic databanks. Often the data sets are
becoming so huge, that make them difficult to exploit.

Extracting knowledge from this raw data 1s an important process
for biologists, using usually data mining approaches. However, it
1s difficult to deals with this genomic information using actual
bioinformatics data mining tools, because data becomes very huge
in quantity. For example the capacity of DNA microarray data
increased by thousand 1n several years. Even the best
bioinformatics visual data mining tools on this kind of data, such
as the innovative and famous hierarchical visual clustering of
Eisen et al. [1998] do not achieve to deal with this size increasing.
The advances in virtual reality and data visualization have thus
creating increasing need for graphical tools and techniques to aid
in large genomic data analysis. For example, the limit of the
desktop context in the Eisen’s solution, leaded Kano et al. [2002]
to adapt this paradigm into an immersive context. New solutions
were developed in order to deal other kind of huge data, such as
huge molecule. ADN-Viewer [Gherbi. and Hérisson 2002] exploits
the advantages of a virtual context with large display, to deals
with huge nucleic molecule, and offers biologists a new
representation of their huge DNA sequences, by representing its
predicted 3D architecture, according to it textual sequence (list of
A, C, G, T) and biophysical model. Sharma et al [2002] proposed
Atomsviewer, a similar solution in an immersive context, in order
to explore billion-atom molecules. However, there are other kinds
of genomic information relating to genes or molecules, recorded
in structured format within many genomic databanks. Sequence
World [Rojdestvenski et al. 2000] proposes the first solution in an
immersive context, in order to explore this kind of huge factual
genomic databanks. Nevertheless, and this solution deals only
with annotated gene sequence databanks such as GenBank,
solution, and does not address the problem of heterogeneity.

As Sequence Word, this paper presents a visual mining approach,
in an immersive context. However, our solution allows biologists
to explore and manage huge and heterogeneous genomic data, not
only annotated sequence databanks. Our solution is based on a
well-adapted graphical and interaction paradigm for genomic
data, where global topological characteristics of data are easily
visible, on the contrary to traditional genomic database browsers,
always focused on the zoom and details level. First, we present in
how we address the problem of the format heterogeneity of this
kind of databases, in order to explore them with a common
visualization paradigm. We explain then how our software deals
with huge genomic data, using a specific data representation, an
immersive context and simple scene management. Finally, we
present some results and experiments produced by
Genome3DExplorer, leaded by biologists on various sets of
biological data.

| would have written a shorter letter, Someone once asked President
but | did not have the time. Woodrow Wilson how long it took him

to prepare a speech.
(Blaise Pascal, Provincial Letters # XVI)

‘It depends. If | am to speak ten
minutes, | need a week for preparation;
If fiteen minutes, three days;

If half an hour, two days;

If an hour, | am ready now.”

(Josephus Daniels, The Wilson Era: Years of War
and After 1917-1923)

Making Glear Graphs and Tables

Clear Graphs/Tables

1 graph/table = 1 story

Bacteria

AN
-

W
-

N
-

—
-

40
30

20

Nr. of bacteria

10

1 2 3 4 5
Time from start of culture

)
£ 40
(0p)
-
@)
= 30
©
o
O 20
M
‘o
< 10
Z

1 2 3 4 5
Time from start of culture (hours)

Growth of Vibrio cholerae in 0.9% NaCl solution at 22 °C

)
£ 40
(0p)
-
@)
= 30
©
o
O 20
M
‘o
< 10
Z

1 2 3 4 5 0
Time from start of culture (hours)

Growth of Vibrio cholerae in 0.9% NaCl solution at

) —— 22°(C
-f% 40 — 18° C
)

D)

@)

= 30

®

O

O 20

M

O

< 10

P

1 2 3 4 5

Time from start of culture (hours)

Stack layer

Lines of code

VigNAT | VigBr | ViglLB 969 | 815 | 850
VigPol | VigFw 725 | 754
libVig 1674
KLEE-uClibc (libc) 60556
DPDK 623380
Ixgbe Driver 24211
Operating system (NFOS) 1958

Table 2. Size of each layer 1n the Vigor stack.

Stack layer Lines of code
VigNAT | VigBr | ViglLB 969 | 815 | 850
VigPol | VigFw 725 | 754

l1ibVig 1,674
KLEE-uClibc (libc) 60,556
DPDK 62,380
Ixgbe Driver 24,211
Operating system (NFOS) 1,958

Table 2. Size of each layer 1n the Vigor stack.

Stack layer Lines of code
VigNAT | VigBr | ViglLB 969 | 815 | 850
VigPol | VigFw 725 | 754

l1ibVig 1,674
KLEE-uClibc (libc) 60,556
DPDK 62,380
Ixgbe Driver 24,211
Operating system (NFOS) 1,958

Table 2. Size of each layer 1n the Vigor stack.

» Use font faces and sizes consistently

EXplain Your Data

The purpose of computing is insight,
not numbers.

(Richard Hamming, Numerical Methods for
Scientists and Engineers, 1962)

EXplain Your Data

64 sigs, siglen 2, 8 locks, 9,,=1 usec, o,,=1 msec

30 | | | |] | | | |
Instrumentation

25 Data Structure Updates .
20 Avoidance]

il

128 256 512 1024
Number of threads

Overhead [%]

Figure 8: Breakdown of overhead for Java Dimmunix.

The results for Java are shown in Figure 8 —the bulk of
the overhead 1s introduced by the data structure lookups
and updates.

Use Text to Give Context and Draw Gonclusions

64 threads, 8 locks, 9;,,=1 usec, 9, ,=1 msec

©
c
@)
(@)
(b}
)
~ 8300 [.
(7)) — _
C %MW&
2 8200 ki
©
L 8100 - |)
O pthreads Baseline —e—
< 8000 pthreads Dimmunix (match depth=4) —8— -
o pthreads Dimmunix (match depth=8) —x—
— 7900 I | | | | |

2 4 8 16 32 64 128 256

Number of signatures in history

Figure 7: Lock throughput as a function of history size
and matching depth for pthreads. Java results are similar.

Impact of history size and matching depth: The per-
formance penalty incurred by matching current execu-
tions against signatures from history should increase
with the size of the history (1.e., number of signatures) as
well as the depth at which signatures are matched with
current stacks. Average length of a signature (1.e., aver-
age number of threads involved in the captured deadlock)
also influences matching time, but the vast majority of
deadlocks 1n practice are limited to two threads [16], so
variation with signature size 1s not that interesting.

In addition to the matching overhead, as more and
more deadlocks are discovered in the program, the pro-
gram must be serialized increasingly more 1n order to be
deadlock-safe (1.e., there are more deadlocks to avoid) —
our overhead measurements include both effects.

We show 1n Figure 7 the performance overhead intro-
duced by varying history size from 2-256 signatures. The
overhead introduced by history size and matching depth
1s relatively constant across this range, which means that
searching through history i1s a negligible component of
Dimmunix overhead.

Dummy Graphs

© 40
(qV]
@
>
530
=
(D)
£ 20
@)
m
= 10

1 2 3 4
Time since boot-up (days)

Unfortunately, there 1s an inherent conflict in the design goals be-
hind these devices: as mobile systems, they should be designed to
maximize battery life, but as intelligent devices, they need powerful
processors, which consume more energy than those in simpler de-
vices, thus reducing battery life. In spite of continuous advances in
semiconductor and battery technologies that allow microprocessors
to provide much greater computation per unit of energy and longer
total battery life, the fundamental tradeoff between performance
and battery life remains critically important.

Recently, significant research and development efforts have been
made on Dynamic Voltage Scaling (DVS) [2, 4,7, 8, 12, 19, 21,
22, 23, 24, 25, 26, 28, 30]. DVS tries to address the tradeoff
between performance and battery life by taking into account two
important characteristics of most current computer systems: (1)
the peak computing rate needed 1s much higher than the average
throughput that must be sustained; and (2) the processors are based
on CMOS logic. The first characteristic effectively means that high
performance 1s needed only for a small fraction of the time, while
for the rest of the time, a low-performance, low-power processor
would suffice. We can achieve the low performance by simply
lowering the operating frequency of the processor when the full
speed 1s not needed. DVS goes beyond this and scales the oper-
ating voltage of the processor along with the frequency. This 1s
possible because static CMOS logic, used in the vast majority of
microprocessors today, has a voltage-dependent maximum operat-
ing frequency, so when used at a reduced frequency, the processor
can operate at a lower supply voltage. Since the energy dissipated
per cycle with CMOS circuitry scales quadratically to the supply
voltage (E o< V?) [2], DVS can potentially provide a very large
net energy savings through frequency and voltage scaling.

o Technical writing # Lyrical writing

o Write iteratively (the way Picasso drew)

* Clean, recursive structure to ease reader’s load
* Avoid opinions, vagueness

* Reduce # of words, increase # of examples

o C(Clear graphs with explained data

0P1(Naming}

In the current Internet, when a client wants to access some content, it first
contacts DNS to obtain an IP address for a service that serves the desired
content; only after this name lookup is complete can the client start
communicating with the target service and accessing the target content.

Assuming we can change the Internet architecture, is it possible to remove the
need for the client to do a separate name lookup in order to access the target

content?

Assume you can change the Internet architecture any way you want, e.qg., you
can change the TCP/IP stack, the inter-domain routing protocol, the way
packet switches and routers operate, etc.

Assume that a client names content using a bit string of bounded length.
(For example, a DNS name or a URL is a bit string of bounded length.)

