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Collisional processes in plasmas

• Basic concept of collisions

– Coulomb collisions as elastic collisions - main properties

• Multiple collisions in plasmas

– Rutherford differential cross-section and the small angle approximation

– Integration over the impact parameter and Coulomb logarithm

• Effective collision frequencies and cross-sections

– For the exchange of energy and momentum

– Average over a distribution function

• Relaxation processes and relevant time scales

• Application of collision theory

– Plasma resistivity

– Run-away process
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1 Basic concept of collisions

Which collisions occur in plasmas for fusion?

• collisions between charged particles and neutrals

• collisions between charged particles and charged particles (Coulomb collisions)

Notes
1. To call the interaction between charged particles a “collision” is in fact an approximation.

We know that charged particles interact with each other in large numbers (within the
Debye sphere). But we assume that such interactions can be approximated by a
sequence of binary interactions.

2. We also assume that Coulomb collisions are elastic, meaning that we neglect bremsstrahlung
radiation (as Wrad

1
2
mv2
∼

(
v
c

)3 ≪ 1).
Fusion plasmas are in general strongly ionized, in the sense that Coulomb collisions dominate
over all other kinds of collisions. This situation is described by λmfp

Coulomb < λ
mfp
other collisions.

1.1 Theory of Coulomb collisions

We assume that the collisions are elastic, and note that the Coulomb force is radial. Thus,
p and E are conserved and the motion is on a plane (angular momentum is also conserved).
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Figure 1: Geometry for one collision and definition of the impact parameter b.

The conservation laws give

tan
θ

2
=
b90
b

with b90 = b90(v) =
q1q2
4πϵ0µv2

,

where µ is the reduced mass, µ = m1m2
m1+m2

, and v is the relative velocity. This expression is
valid in the center of mass frame.
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1.2 Effect of multiple collisions

We need to look at the different deflection angles/impact parameters.

Rutherford differential cross-section

The solid angle dΩ is given by d(area)
r2

. The geometry gives

dσ = 2πb|db|

dΩ =
2πr sin θr |dθ|

r2
= 2π sin θ|dθ|

Figure 2: Definition of the differential cross-section.

Definition. Differential cross-section dσ
dΩ , such that

ntargets

(
dσ
dΩ

)
dΩ ⇐⇒ number of particles per unit path

length scattered into solid angle dΩ.

Rutherford:

dσ
dΩ
=
2πb|db|
2π sin θ|dθ| = −

b

sin θ

db
dθ
= · · · =

b290
4

1

sin4 (θ/2)
=

q21q
2
2

(4πε0)2µ2v4
1

4 sin4 (θ/2)
.

Example of application

To get the cross-section for collisions with angle of deflection larger than 90◦, we could
calculate:

σ(θ ≥
π

2
) =

∫ θ=π
θ=π/2

dσ
dΩ

dΩ(θ) =
b290
4

∫ π
π/2

2π sin θdθ

sin4 θ2
= πb290,

as expected from the definition/meaning of b90.

Notes
1. dσ

dΩ ∝ v
−4: as the collision rate goes like v dσ

dΩ ∝ v
−3, it scales like ∝ T−3/2

(the hotter the plasma, the less collisional).
2. dσ

dΩ ∝
1

sin4 θ
2

for small angles dσ
dΩ ∝ θ

−4. The small angle collisions dominate.

From now on, we will consider only small angle collisions.
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Integration over all possible impact parameters

Energy transfer rate

Energy exchanged over the collision:

∆EK = EK
m1m2

(m1 +m2)2
θ2

We have assumed that v2 = 0. EK = 1
2m1v

2
1 . But for small θ, tan θ2 ∼

θ
2
∼= b90

b . So the
energy lost in one collision is given by

∆EK = EK
m1m2

(m1 +m2)2

(
2b90
b

)2
Per unit path length, for impact parameter in interval db

dEK
dl

∣∣∣∣
db
= ∆EKndσ

where ndσ = # of collisions per unit length. So for all b’s,

dEK
dl

∣∣∣∣
all b’s

=

∫ bmax
bmin

dEK
dl

∣∣∣∣
db
=

∫ bmax
bmin

∆EKndσ =
∫ bmax
bmin

EK
m1m2

(m1 +m2)2
4b290
b2
2πnbdb

= 8π
m1m2

(m1 +m2)2
EKnb

2
90

∫ bmax
bmin

db
b
.

Discussion

What are bmin and bmax?

• bmin : We are considering only small angles. For b < b90 the assumption of small
angles would be violated. ⇒ bmin ≃ b90. Note that at very high Te , b90 becomes so
small that quantum mechanical corrections must be included. In such cases one can
take bmin ≃ λDeBroglie = h/mv .

• bmax : Remember the Debye screening effect. Outside the Debye sphere, the poten-
tial is screened, so the “collision" does not “occur" ⇒ bmax ≃ λD.

Thus,
dEK
dl
= EKn8πb

2
90

m1m2
(m1 +m2)2

ln Λ

where ln Λ is the so called Coulomb logarithm and

Λ =
λD
b90
.

Note that because of the very weak logarithmic dependence, the exact choice of bmin, bmax
is irrelevant.
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2 Effective collision frequency for relaxation processes

For the exchange of quantity of interest, the effective collision frequency is given by

Effective collision frequency =
1

characteristic time
, ν =

1

τ
.

For the effective collision frequency for the exchange of energy,

νEK =
1

EK

dEK
dt

=
v= dl

dt

1

EK
v

dEK
dl
= 8πn

q21q
2
2

(4πε0)2
ln Λ

m1m2v3

As v = λ
τ , ν = nσv . So the effective cross section is given by σEK =

νEK
nv .

Exchange of momentum

From the theory of single collision, we have

σp = σEK
m1 +m2
2m1

=
1

2
σEK

(
1 +
m2
m1

)
=


1
2σEK if m2 ≪ m1,
σEK if m2 = m1,
1
2σEK

m2
m1
≫ σEK if m2 ≫ m1.

The typical case of electrons impinging on ions is characterized for example by m2 >> m1.

The general form of νEK for collisions of particles of species j (projectiles) upon particles of
species k (targets) is

ν
j/k
EK
∼ nk

Z2kZ
2
j e
4

2πε20

ln Λk

mjmkv
3
jk

Notes
1. vjk =

∣∣∣→v j − →v k ∣∣∣ is the relative velocity,

2. ln Λk can be considered ∼ constant (for example, ln Λe ∼ ln Λi),

From a single velocity to a full distribution

We still need one conceptual step to describe relaxation processes in a whole plasma: to go
from a single velocity/energy to a full distribution. For this, we need to average the physical
quantity of interest (e.g. the loss/exchange rate of momentum) over a distribution function.
But which distribution should we consider? Experiments suggest a Maxwellian, even in cases
for which we do not expect to reach an equilibrium. So, we go from νEK (v) or νp(v) to
ν̄p(T ).
Instead of doing the calculation, we could guess, for example for ν̄e/ip that ν̄e/ip = ν

e/i
p (vth,e),

where vth,e =
√
Te
me

. In fact, we would not be too wrong. The full calculation gives

ν̄
e/i
p =

1

⟨|p|⟩t=0

〈
d|p|
dt

〉
=

1

⟨|p|⟩t=0
1

ne

∫
dv fe(v)mevν

e/i
p︸ ︷︷ ︸

d|p|
dt

=

· · · =
1

3

√
2

π
ν
e/i
p (vth,e) ∼= 0.26νe/ip (vth,e).
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Summary of average collision frequencies

Momentum Energy

e → i νe ≡ ν̄e/ip = 1
3

√
2
πν
e/i
p (vth,e) =

1
3

√
2
π
niZ

2e4 ln Λ

4πε20m
1/2
e T

3/2
e

ν̄
e/i
EK
= 2memi νe

e → e ν̄
e/e
p
∼= 1√

2
νe ν̄

e/e
EK
= ν̄

e/e
p

i → e ν̄
i/e
p
∼= me
mi
νe ν̄

i/e
EK
∼= 2ν̄ i/ep ∼= ν̄e/iEK

i → i νi ≡ ν̄ i/ip = 1√
2

(
me
mi

)1/2 (
Te
Ti

)3/2
νe ν̄

i/i
EK
= νi

Notes
1. We could refer all frequencies to the e/i case.
2. For Te = Ti and Z = 1, we have

νe
νi
=

√
2mi
me
.

Characteristic time scales

Figure 3: Characteristic time scales in plasmas.

Notes
(a) This time scale corresponds to isotropisation and thermalisation of electrons (→ Te).
(b) This time scale corresponds to isotropisation and thermalisation of ions (→ Ti).
(c) This time scale corresponds to the thermalisation of electrons with ions (Te , Ti → T ).

Numerical examples

• H-plasma (Z = 1):

νe ∼= 5× 10−11
n[m−3]

T
3/2
e [eV]

s−1 and νi ∼= 10−12
n[m−3]

T
3/2
i [eV]

s−1.
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• For "ITER-like" plasma: Te = Ti = 15keV, n = 3× 1020m−3 so

νe ∼ 8× 103s−1 → τe ∼= 0.1ms and νi ∼= 160s−1 → τi ∼= 6ms.

But, τthermal equilibium e↔i ∼ mi
me
τe = 1840× 0.1ms ∼ 0.2s

Notes
1. For “not so slow” phenomena we should treat the plasma as made of different species

with independent equilibria and, in general, different temperatures as well. For slow
phenomena we could also treat the plasma as a single fluid.

2. For T ∼ 10− 20keV, σCoul ≫ σf usion: particles are confined for many collision times
before they fuse.

3. νe , νi ≪ Ωe ,Ωi : dynamics is still dominated by Larmor (or drift) motion.

3 Plasma resistivity and run-away process

Take a fully ionised plasma to which we apply an external electric field E. Electrons and ions
will be accelerated in opposite directions, but will also be subject to a friction force due to
Coulomb collisions. This friction force is responsible for the finite resistivity of the plasma.
In order to calculate it, we assume:

• Only electrons carry currents1

• Only e → i collisions occur (ignore e → e)

• Distribution of electrons remains Maxwellian with a drift vd

The momentum equation2 along E (along B or with B = 0) can be written in scalar form

me
dvd
dt
= −eE︸︷︷︸

acceleration

−
mevd

τ
e/i
p (v)︸ ︷︷ ︸

deceleration

(3.1)

Note that for electrons the directions of vd and E are opposite. To solve eq.(3.1) we need
to evaluate τe/ip ; but for which velocity? Two cases can be distinguished:

1. vd ≪ vthe

2. vd ≥ vthe

Case vd ≪ vthe

In this case, the velocity that dominates in the definition of the relative velocity in the collision
corresponds to the electron thermal motion and does not depend on vd. We have a steady–
state solution ( ddt = 0), in which the acceleration due to the electric field is balanced by the

1me ≪ mi ; for similar energies −→ |vi | ≪ |ve |
2Note that we need to consider momentum exchange collisions, as we have to do with directed velocity.
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collisional drag exerted by the ions:

τ
e/i
p eE = −mevd ⇒ v terminald = −

τ
e/i
p eE

me
. (3.2)

As j = −enevd the previous equation can be recast as

τ
e/i
p eE =

me j

ene
or j =

e2ne

me ν̄
e/i
p

E. (3.3)

With the definition of the resistivity η, j = η−1E, we find

η =
me ν̄

e/i
p

e2ne
=
me
e2ne

1

3

√
2

π

(niZ)Ze
4 ln Λ

4πε20m
1/2
e T

3/2
e

=

√
2

π3/2
m
1/2
e Ze

2 ln Λ

12ε20T
3/2
e

. (3.4)

We observe that:

• There is no dependence on the plasma density. In fact, increasing the density, increases
both the number of carriers and the number of collisions, so the two effects balance
out.

• η ∝ T−3/2e . For a metal, η ∝ Tαe , with α > 0: very different!

• Our simple calculation over–estimates η by a factor of 2 because we did not account
for the acceleration of electrons by E: faster electrons are less subject to collisions and
carry more current.

• From more complete calculations:

η [Ωm] =
Ze2
√
me ln Λ

4πϵ203
√
2πT

3/2
e

= 5.1 · 10−5×
Z ln Λ

(Te [eV])3/2
“Spitzer resistivity” (3.5)

This value agrees reasonably well with the experiments.

Examples
1. Plasma at 100 eV: η ∼ 6 · 10−7 Ωm [∼ η of stainless steel]
2. Plasma at 1 keV: η ∼ 2 · 10−8 Ωm [∼ η of copper]3

3. For T ≫ 1 keV plasma becomes almost a perfect conductor

The decrease of the resistivity with the temperature has two consequences:

1. Magnetic flux is ‘frozen’ within plasma – a general property of superconductors4

2. Heating by current (‘ohmic heating’) becomes less and less effective at high Te . The
increase in energy per unit volume is

Power

Volume
= force× velocity × density = e|E| × vd × n = ηj2 ∝ T−3/2e . (3.6)

Note that in the presence of B (with B∥E), we would have η∥ ≈ η and η⊥ > η: particles
move preferentially along the magnetic field lines, therefore the resistivity in this direction is
smaller than in the direction perpendicular to B.

3e.g. solar flares: gigantic eruptions with I ∼ MA sustained by a small ∆V ≤ 1 Volt
4e.g. solar wind carrying B–field with it.
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Case vd ≳ vthe

If E is sufficiently high that the relative speed is not much smaller than the electron thermal
speed, τe/ip cannot be considered independent of vd and we do not have necessarily a steady–
state solution. In this case we cannot take the value of νe/ip averaged over a Maxwellian
distribution, but we need to retain the velocity dependent expression of νe/ip (vd) and the
time derivative d/dt.

Thus

me
dvd
dt
= −eE − νe/ip (vd)mevd. (3.7)

The key question is the sign of the term on the right hand side. For

e|E| > νe/ip mevd (3.8)

we have acceleration, otherwise deceleration. If we have acceleration, an increase in vd leads
to a decrease in νe/ip . Then there is even more acceleration and so on. This is called the
run-away regime: electrons with sufficiently high velocity are more and more accelerated by
E as the collisional drag due to the friction force is insufficient to balance the acceleration
given by the electric field (figure 4).
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Figure 4: Sketch of the collisional drag Fc acting on electrons as a function of their velocity
vd for E > ED. The black arrows indicate the overall acceleration or deceleration.

By expressing νe/ip in terms of vd, ν
e/i
p = ν

e/i
p (vd) we have5

e|E| >
(niZ)Ze

4

4πϵ20

lnΛ

m2ev
3
d

mevd

|E| >
neZe

3 ln Λ

4πε20mev
2
d

or
1

2
mev

2
d >

neZe
3 ln Λ

8πε20|E|
(3.9)

5We have done this calculation in the exercise session
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Let’s divide by Te :
1

2

mev
2
d

Te
>
ED
|E| (3.10)

where we have introduced the Dreicer electric field ED := neZe3 ln Λ
8πε20Te

.

The meaning of this form is that for |E| = ED the run-away regime is reached at Edrift =
1
2mev

2
d = Te .

Figure 5: Melting damage to the upper inner wall of JET, thought to be caused by run-away
electrons.

The production of run-away electrons is a serious problem in tokamaks. For typical parame-
ters of fusion plasmas the Dreicer field can be as low as 1 V/m. The probability of generating
run-away electrons is then quite high, and these electrons can reach energies of the order
of a few MeV. If their number is sufficiently high they give rise to ’electron beams’ that are
no more confined inside the plasma. In fact, they are thought to be responsible for dam-
ages to the vacuum vessel walls and to other components installed inside the vessel (figure 5).

One of the problems to be solved for ITER is in fact how to avoid, or mitigate, the generation
of run-away electrons following a plasma disruption (a sudden loss of current, hence of
confinement).

Once an electron exceeds the critical velocity, eq.(3.10), it is continuously accelerated and
can reach energies of several tens of MeV. Because of the toroidal acceleration, electrons
emit synchrotron radiation. A relativistic limit to the maximum energy an electron can reach
is given by a balance between the amount of power that is absorbed from the accelerating
electric field and the amount of power lost by electromagnetic radiation.
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