
Replication and Consensus
CS-438

Decentralized Systems Engineering

Slide credits: Pasindu Tennage

Replicate Data

● Why replicate?
○ Avoid single point of failure

● What are the challenges of replication?
○ Maintaining strong consistency

● What are the consistency models?
○ Strongly consistent
○ Eventually consistent
○ …

● What applications use strong consistency
○ Boxwood, Zoo-Keeper, Spanner

Replicated Log

Source: Raf user study, John Ousterhout and Diego Ongaro, Stanford University

● Execute a set of commands in the
same order

● Total ordering
○ Consensus

● Majority assumption

Failure Modes

● Crash fault: process crashes at time t and never recovers after that time

● Omission: process does not send (or receive) a message that it is supposed
to send (or receive)

● Crash recovery: A process that crashes and recovers a finite number of times
is correct in this model

● Byzantine: may deviate in any conceivable way from the algorithm

Failure Modes

● Crash fault: process crashes at time t and never recovers after that time

● Omission: process does not send (or receive) a message that it is supposed
to send (or receive)

● Crash recovery: A process that crashes and recovers a finite number of times
is correct in this model

● Byzantine: may deviate in any conceivable way from the algorithm

Network Model

△: one way latency of a message from node p to node q

GST: Global stabilization time - time after which each message sent from node p
to q is received within bounded △

● Synchronous: for the entire execution △ is bounded and all messages are
received within a bounded △

● Partially Synchronous: after GST there exists a bounded △ such that all
messages are received within △ (no guarantee before the GST)

● Asynchronous: there is no upper bound on the △

Network Model

△: one way latency of a message from node p to node q

GST: Global stabilization time - time after which each message send from node p
to q is received within bounded △

● Synchronous: for the entire execution △ is bounded and all messages are
received within a bounded △

● Partially Synchronous: after GST there exists a bounded △ such that all
messages are received within △ (no guarantee about before the GST)

● Asynchronous: there is no upper bound on the △

Consensus Interface

● method Propose(v): propose v

● indication Decide(v): decide on the value v

Consensuspropose(v) decide(v)

Consensus: Properties

● Validity: Decided value should be one of the values proposed by a replica

● Agreement: No two nodes decide on different values

● Termination: Each node eventually decides

Strawman 1: Single acceptor

● [Strawman: a solution attempt that partially
solves the problem] – not a full solution and
has drawbacks

● Problem: Single point of failure

● Does not solve consensus

Source: Raf user study, John Ousterhout and
Diego Ongaro, Stanford University

Strawman 2: Quorum of acceptors

● Have a quorum of acceptors:
○ Each acceptor accepts the first value
○ Value chosen by a majority of acceptors

● Split votes

● Does not solve
consensus

Source: Raf user study, John Ousterhout and Diego Ongaro, Stanford University

Strawman 3: Accept multiple values

● How to determine
the safe values
to accept?

● Does not solve
consensus

● We need a two
phase protocol

Source: Raf user study, John Ousterhout and Diego Ongaro, Stanford University

Paxos

● The Part-Time Parliament
Lamport, Leslie. "The part-time parliament." Concurrency: the
Works of Leslie Lamport. 277-317.

● Paxos made simple
Lamport, Leslie. "Paxos made simple." ACM SIGACT News
(Distributed Computing Column) 32, 4
(Whole Number 121, December 2001) (2001): 51-58.

● Crash fault tolerant

● Partial synchronous (agreement holds under asynchrony, but
termination holds only under partial synchrony)

Paxos

● Proposers:
○ Handle client requests
○ Propose(v)

● Acceptors
○ Respond to proposer messages
○ Store chosen value

● In our setup, each replica can act as a proposer and acceptor

Ballot Number

● A unique number (ballot)

Paxos: a two phase protocol

● Prepare-Promise
○ Find the safe value
○ Block older proposals that

are not yet completed

● Propose-Accept
○ Propose the safe value

● [Learn]

Source: Baxos

Paxos

Source: Baxos

Replica State
● minBallot = 0
● acceptedBallot =-1
● acceptedValue = nil

● Proposer: upon Propose(value):
○ Chose n > minBallot; broadcast Prepare(n)

● Acceptor: upon receiving Prepare(n) from p:
○ if n>minBallot

■ minBallot = n
■ send p Promise(n, acceptedBallot, acceptedValue)

● Proposer: upon receiving a majority Promise(n, b, v):
○ if b==-1 for all Promise messages: value = value
○ else: value = v where b is the highest from the {(b,v)}
○ Broadcast Propose(n, value)

● Acceptor: upon receiving Propose(n,v) from p:
○ if n>= minBallot

■ acceptedBallot = n; acceptedValue=v;
■ send p Accept(n, v)

● Proposer: upon receiving a majority Accept(n, v):
○ decide (v); broadcast (Learn, v)

Example Executions

● Case 1: No previously accepted value

● Case 2: Previously decided value

● Case 3: Previously accepted, but not decided value

Paxos

Source: Baxos

Replica State
● minBallot = 0
● acceptedBallot =-1
● acceptedValue = nil

● Proposer: upon Propose(value):
○ Chose n > minBallot; broadcast Prepare(n)

● Acceptor: upon receiving Prepare(n) from p:
○ if n>minBallot

■ minBallot = n
■ send p Promise(n, acceptedBallot, acceptedValue)

● Proposer: upon receiving a majority Promise(n, b, v):
○ if b==-1 for all Promise messages: value = value
○ else: value = v where b is the highest from the {(b,v)}
○ Broadcast Propose(n, value)

● Acceptor: upon receiving Propose(n,v) from p:
○ if n>= minBallot

■ acceptedBallot = n; acceptedValue=v;
■ send p Accept(n, v)

● Proposer: upon receiving a majority Accept(n, v):
○ decide (v); broadcast (Learn, v)

Case 1: No previously accepted value

minBallot=0
acceptedBallot=-1
acceptedValue=nil

propose(v)
n = 1

Prepare(1)

minBallot=0
acceptedBallot=-1
acceptedValue=nil

minBallot=0
acceptedBallot=-1
acceptedValue=nil

minBallot=1
acceptedBallot=-1
acceptedValue=nil

minBallot=1
acceptedBallot=-1
acceptedValue=nil

minBallot=1
acceptedBallot=-1
acceptedValue=nil

Promise(1,-1, nil) Propose(1,v)

v=v
minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=1
acceptedBallot=1
acceptedValue=v

Accept(1,v)

decide(v)

Case 2: Previously decided value: initial state

minBallot=0
acceptedBallot=-1
acceptedValue=nil

propose(v)
n = 1

Prepare(1)

minBallot=0
acceptedBallot=-1
acceptedValue=nil

minBallot=0
acceptedBallot=-1
acceptedValue=nil

minBallot=1
acceptedBallot=-1
acceptedValue=nil

minBallot=1
acceptedBallot=-1
acceptedValue=nil

minBallot=1
acceptedBallot=-1
acceptedValue=nil

Promise(1,-1, nil) Propose(1,v)

v=v
minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=1
acceptedBallot=1
acceptedValue=v

Accept(1,v)

decide(v)

Paxos

Source: Baxos

Replica State
● minBallot = 0
● acceptedBallot =-1
● acceptedValue = nil

● Proposer: upon Propose(value):
○ Chose n > minBallot; broadcast Prepare(n)

● Acceptor: upon receiving Prepare(n) from p:
○ if n>minBallot

■ minBallot = n
■ send p Promise(n, acceptedBallot, acceptedValue)

● Proposer: upon receiving a majority Promise(n, b, v):
○ if b==-1 for all Promise messages: value = value
○ else: value = v where b is the highest from the {(b,v)}
○ Broadcast Propose(n, value)

● Acceptor: upon receiving Propose(n,v) from p:
○ if n>= minBallot

■ acceptedBallot = n; acceptedValue=v;
■ send p Accept(n, v)

● Proposer: upon receiving a majority Accept(n, v):
○ decide (v); broadcast (Learn, v)

Case 2: Previously decided value: cntd

minBallot=1
acceptedBallot=1
acceptedValue=v

propose(v’)
n = 2

Prepare(2)

minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=2
acceptedBallot=1
acceptedValue=v

minBallot=2
acceptedBallot=1
acceptedValue=v

minBallot=2
acceptedBallot=1
acceptedValue=v

Promise(2,1, v) Propose(2,v)

v=v

minBallot=2
acceptedBallot=2
acceptedValue=v

minBallot=2
acceptedBallot=2
acceptedValue=v

minBallot=2
acceptedBallot=2
acceptedValue=v

Accept(2,v)

decide(v)

Case 3: Previously accepted, but not decided value

minBallot=0
acceptedBallot=-1
acceptedValue=nil

propose(v)
n = 1

Prepare(1)

minBallot=0
acceptedBallot=-1
acceptedValue=nil

minBallot=0
acceptedBallot=-1
acceptedValue=nil

minBallot=1
acceptedBallot=-1
acceptedValue=nil

minBallot=1
acceptedBallot=-1
acceptedValue=nil

minBallot=1
acceptedBallot=-1
acceptedValue=nil

Promise(1,-1, nil) Propose(1,v)

v=v
minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=1
acceptedBallot=-1
acceptedValue=nil

Paxos

Source: Baxos

Replica State
● minBallot = 0
● acceptedBallot =-1
● acceptedValue = nil

● Proposer: upon Propose(value):
○ Chose n > minBallot; broadcast Prepare(n)

● Acceptor: upon receiving Prepare(n) from p:
○ if n>minBallot

■ minBallot = n
■ send p Promise(n, acceptedBallot, acceptedValue)

● Proposer: upon receiving a majority Promise(n, b, v):
○ if b==-1 for all Promise messages: value = value
○ else: value = v where b is the highest from the {(b,v)}
○ Broadcast Propose(n, value)

● Acceptor: upon receiving Propose(n,v) from p:
○ if n>= minBallot

■ acceptedBallot = n; acceptedValue=v;
■ send p Accept(n, v)

● Proposer: upon receiving a majority Accept(n, v):
○ decide (v); broadcast (Learn, v)

Case 3: Previously accepted, but not decided value
propose(v’)
n = 2

Prepare(2)

minBallot=2
acceptedBallot=1
acceptedValue=v

minBallot=2
acceptedBallot=1
acceptedValue=v

minBallot=2
acceptedBallot=-1
acceptedValue=nil

Promise(2,1, v) Propose(2,v)

v=v
minBallot=2
acceptedBallot=2
acceptedValue=v

minBallot=2
acceptedBallot=2
acceptedValue=v

minBallot=2
acceptedBallot=2
acceptedValue=v

Accept(2,v)

decide(v)minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=1
acceptedBallot=1
acceptedValue=v

minBallot=1
acceptedBallot=-1
acceptedValue=nil

Promise(2,-1, nil)

Proofs

● Validity: trivially satisfied

● Agreement: if a value is decided by at
least one node, then all the future
proposers will learn that value in the
prepare-promise phase (quorum
intersection)

● Termination: If the network is
synchronous for 4△ with only a single
proposer

Liveness with multiple leaders

Source: Baxos

Ensuring Liveness

● Leader based Paxos - Multi-Paxos
○ Eliminate Prepare-Promise phase

● Random back off - Baxos
○ Optimistic contention handling

Random back off

Source: Baxos

Multi-Paxos

Source: https://www.researchgate.net/figure/Multi-Paxos-optimization_fig1_339998273

Questions?

