=PrL

Replication and Consensus

CS-438
Decentralized Systems Engineering

Slide credits: Pasindu Tennage

Replicate Data

e Why replicate?

o Avoid single point of failure

e \What are the challenges of replication?
o Maintaining strong consistency

e \What are the consistency models?

o Strongly consistent
o Eventually consistent
O

e \What applications use strong consistency
o Boxwood, Zoo-Keeper, Spanner

F

PrL

Replicated Log

e Execute a set of commands in the

same order

e Total ordering
o Consensus

e Majority assumption

CEEEEEE

&

[add jmp mov| sh' |

o

[add jmp[mov sh‘l

shl

(Consensus Consensus Con nsus
Module achine Module achine uIe me

-L@@ﬁb

add jmplmovl sh‘ !

Source: Raf user study, John Ousterhout and Diego Ongaro, Stanford University

Clients

Servers

Failure Modes
e Crash fault: process crashes at time t and never recovers after that time

e Omission: process does not send (or receive) a message that it is supposed
to send (or receive)

e Crash recovery: A process that crashes and recovers a finite number of times
Is correct in this model

e Byzantine: may deviate in any conceivable way from the algorithm

Failure Modes

.

Crash fault: process crashes at time t and never recovers after that time]

Omission: process does not send (or receive) a message that it is supposed
to send (or receive)

Crash recovery: A process that crashes and recovers a finite number of times
Is correct in this model

Byzantine: may deviate in any conceivable way from the algorithm

Network Model

A one way latency of a message from node p to node q

GST: Global stabilization time - time after which each message sent from node p
to q is received within bounded A

e Synchronous: for the entire execution A is bounded and all messages are
received within a bounded A

e Partially Synchronous: after GST there exists a bounded A such that all
messages are received within A (no guarantee before the GST)

e Asynchronous: there is no upper bound on the A

Network Model

A one way latency of a message from node p to node q

GST: Global stabilization time - time after which each message send from node p
to q is received within bounded A

e Synchronous: for the entire execution A is bounded and all messages are
received within a bounded A

0 [Partially Synchronous: after GST there exists a bounded A such that all]
messages are received within A (no guarantee about before the GST)

e Asynchronous: there is no upper bound on the A

Consensus Interface

method Propose(v): propose v

indication Decide(v): decide on the value v

propose(v)——

Consensus

I
"1

decide(v)

=PiL

Consensus: Properties
e \alidity: Decided value should be one of the values proposed by a replica
e Agreement: No two nodes decide on different values

e Termination: Each node eventually decides

Strawman 1: Single acceptor
e [Strawman: a solution attempt that partially
solves the problem] — not a full solution and
has drawbacks

e Problem: Single point of failure

e Does not solve consensus

=PiL

Proposers

2

Source: Raf user study, John Ousterhout and
Diego Ongaro, Stanford University

Strawman 2: Quorum of acceptors

e Have a quorum of acceptors:
o Each acceptor accepts the first value
o Value chosen by a majority of acceptors

e Split votes

accept?(red) accepted(red)
-

[y

e Does not solve

as]

consensus accept?(blue) accepted(blue)
-

wn 2 wn wn wn
-~ w

accept?(green) accepted(green)
* e

(8}

Source: Raf user study, John Ousterhout and Diego Ongaro, Stanford University

:
accepted(red)
o
-
accepted(blue)
SISt
time

Strawman 3: Accept multiple values

How to determine

the safe values
to accept?

Does not solve
consensus

We need a two
phase protocol

---------- ~. Red Chosen

accept?(red) {ac Cepted(red)‘.
e 4
1
| accepted(red)1
@ .
1 / -----------
\ :accepted(red)i {ac Cepted(blue)\
|\\. ’ : hd '
/ i accepted(blue):
o :
1
: accepted(blue)i
- 4 7 X
accept?(blue) “emmmcmmaaa- 2 time

Blue Chosen

Source: Raf user study, John Ousterhout and Diego Ongaro, Stanford University

Paxos

The Part-Time Parliament
Lamport, Leslie. "The part-time parliament." Concurrency: the
Works of Leslie Lamport. 277-317.

Paxos made simple

Lamport, Leslie. "Paxos made simple." ACM SIGACT News
(Distributed Computing Column) 32, 4

(Whole Number 121, December 2001) (2001): 51-58.

Crash fault tolerant

Partial synchronous (agreement holds under asynchrony, but
termination holds only under partial synchrony)

Paxos

e Proposers:

o Handle client requests
o Propose(v)

e Acceptors

o Respond to proposer messages
o Store chosen value

e |n our setup, each replica can act as a proposer and acceptor

F

PrL

Ballot Number

e A unique number (ballot)

I
"1

Paxos: a two phase protocol

Prepare-Promise
o Find the safe value
o Block older proposals that
are not yet completed

Propose-Accept
o Propose the safe value

[Learn]

I
T
"1
r

Replica 1 (
Propose
Prepate Accgpt —
Promise
Replica 2
Promise GeEp
Propase Lign

Prepar

Replica 3

Source: Baxos

Paxos

Proposer: upon Propose(value):
o Chose n > minBallot; broadcast Prepare(n)

Acceptor: upon receiving Prepare(n) from p:
o if n>minBallot

Proposer: upon receiving a majority Promise(n, b, v):
o if b==-1 for all Promise messages: value = value
o else: value = v where b is the highest from the {(b,v)}

minBallot = n

send p Promise(n, acceptedBallot, acceptedValue)

o Broadcast Propose(n, value)

Acceptor: upon receiving Propose(n,v) from p:
o if n>= minBallot

acceptedBallot = n; acceptedValue=v;
send p Accept(n, v)

Proposer: upon receiving a majority Accept(n, v):
o decide (v); broadcast (Learn, v)

m
v
"

Replica State
e minBallot=0
e acceptedBallot =-1
e acceptedValue = nil

Replica 1 f
Propose
Prepare Accgpt s
Pfomise
Replica 2 {
Promise Propdse GERRE
Prepar Learn
Replica 3

Source: Baxos

Example Executions
e Case 1: No previously accepted value
e Case 2: Previously decided value

e Case 3: Previously accepted, but not decided value

Paxos

Proposer: upon Propose(value):
o Chose n > minBallot; broadcast Prepare(n)

Acceptor: upon receiving Prepare(n) from p:
o if n>minBallot

Proposer: upon receiving a majority Promise(n, b, v):
o if b==-1 for all Promise messages: value = value
o else: value = v where b is the highest from the {(b,v)}

minBallot = n

send p Promise(n, acceptedBallot, acceptedValue)

o Broadcast Propose(n, value)

Acceptor: upon receiving Propose(n,v) from p:
o if n>= minBallot

acceptedBallot = n; acceptedValue=v;
send p Accept(n, v)

Proposer: upon receiving a majority Accept(n, v):
o decide (v); broadcast (Learn, v)

m
v
"

Replica State
e minBallot=0
e acceptedBallot =-1
e acceptedValue = nil

Replica 1 f
Propose
Prepare Accgpt s
Pfomise
Replica 2 {
Promise Propdse GERRE
Prepar Learn
Replica 3

Source: Baxos

Case 1: No previously accepted value

propose(Vv) _ :
minBallot=0 n=1 minBallot=1 V=V minBallot=1 deCIde(V)
acceptedBallot=-1 acceptedBallot=-1 acceptedBallot=1
acceptedValue=nil acceptedValue=nil acceptedValue=v
Prepare(1) Promise(1,-1, nil) Propose(1,v) Accept(1,v)

minBallot=0
acceptedBallot=-1

\\

minBallot=1
acceptedBallot=-1

\\

minBallot=1
acceptedBallot=1

acceptedValue=nil

minBallot=0
acceptedBallot=-1

acceptedVatue=nit

minBallot=1
acceptedBallot=-1

£ A\ []
dallcplicuvaluc=yv

e g

minBallot=1
acceptedBallot=1

acceptedValue=nil

acceptedValue=nil

acceptedValue=v

Case 2: Previously decided value: initial state

propose(Vv) _ :
minBallot=0 n=-1 minBallot=1 V=V minBallot=1 deCIde(V)
acceptedBallot=-1 acceptedBallot=-1 acceptedBallot=1
acceptedValue=nil acceptedValue=nil acceptedValue=v
Prepare(1) Promise(1,-1, nil) Propose(1,v) Accept(1,v)

minBallot=0
acceptedBallot=-1

\\

minBallot=1
acceptedBallot=-1

/

\\

minBallot=1
acceptedBallot=1

/

acceptedValue=nil

minBallot=0
acceptedBallot=-1

acceptedVatue=nit

minBallot=1
acceptedBallot=-1

fom o\ L]
dllcplicuvaluc=v

minBallot=1
' acceptedBallot=1

acceptedValue=nil

acceptedValue=nil

acceptedValue=v

Paxos

Proposer: upon Propose(value):
o Chose n > minBallot; broadcast Prepare(n)

Acceptor: upon receiving Prepare(n) from p:
o if n>minBallot

Proposer: upon receiving a majority Promise(n, b, v):
o if b==-1 for all Promise messages: value = value
o else: value = v where b is the highest from the {(b,v)}

minBallot = n

send p Promise(n, acceptedBallot, acceptedValue)

o Broadcast Propose(n, value)

Acceptor: upon receiving Propose(n,v) from p:
o if n>= minBallot

acceptedBallot = n; acceptedValue=v;
send p Accept(n, v)

Proposer: upon receiving a majority Accept(n, v):
o decide (v); broadcast (Learn, v)

m
v
"

Replica State
e minBallot=0
e acceptedBallot =-1
e acceptedValue = nil

Replica 1 f
Propose
Prepare Accgpt s
Pfomise
Replica 2 {
Promise Propdse GERRE
Prepar Learn
Replica 3

Source: Baxos

Case 2: Previously decided value: cntd

minBallot=1
acceptedBallot=1

minBallot=2
acceptedBallot=1

minBallot=2

acceptedBallot=2

acceptedValue=v

Prepare(/é)

minBallot=1
acceptedBallot=1

acceptedValue=v

acceptedValue=v

Promise(2,’}\ V)

Propqée(Z,v)

minBallot=2
acceptedBallot=1

Accept(2,v) \

acceptedValue=v

-

propose(V’)
n =

acceptedValue=v

minBallot=1
acceptedBallot=1

minBallot=2
acceptedBallot=1

V=V

minBallot=2

acceptedBallot=2

fom o\ L]
dllcplicuvaluc=v f

deci?é(v)

minBallot=2

acceptedBallot=2

acceptedValue=v

acceptedValue=v

acceptedValue=v

Case 3: Previously accepted, but not decided value

propose(Vv) vev
minBallot=0 n=1 minBallot=1 minBallot=1
acceptedBallot=-1 acceptedBallot=-1 acceptedBallot=1
acceptedValue=nil acceptedValue=nil acceptedValue=v
Prepare(1) Promise(1,-1, nil) Propose(1,v)

minBallot=0
acceptedBallot=-1

\\

minBallot=1
acceptedBallot=-1

/

\

minBallot=1
acceptedBallot=1

acceptedValue=nil

minBallot=0
acceptedBallot=-1

acceptedVatue=nit

minBallot=1
acceptedBallot=-1

fom o\ L]
dllcplicuvaluc=v

minBallot=1
acceptedBallot=-1

acceptedValue=nil

acceptedValue=nil

acceptedValue=nil

A VAVAS

Paxos

Proposer: upon Propose(value):
o Chose n > minBallot; broadcast Prepare(n)

Acceptor: upon receiving Prepare(n) from p:
o if n>minBallot

Proposer: upon receiving a majority Promise(n, b, v):
o if b==-1 for all Promise messages: value = value
o else: value = v where b is the highest from the {(b,v)}

minBallot = n

send p Promise(n, acceptedBallot, acceptedValue)

o Broadcast Propose(n, value)

Acceptor: upon receiving Propose(n,v) from p:
o if n>= minBallot

acceptedBallot = n; acceptedValue=v;
send p Accept(n, v)

Proposer: upon receiving a majority Accept(n, v):
o decide (v); broadcast (Learn, v)

m
v
"

Replica State
e minBallot=0
e acceptedBallot =-1
e acceptedValue = nil

Replica 1 f
Propose
Prepare Accgpt s
Pfomise
Replica 2 {
Promise Propdse GERRE
Prepar Learn
Replica 3

Source: Baxos

Case 3: Previously accepted, but not decided value

ropose(V’ :
minBallot=1 P _p (V) : V=V : decide(v)
- n=2 minBallot=2 minBallot=2
acceptedBallot=1 _
acceptedvatue=v acceptedBallot=1 acceptedBallot=2
acceptedValue=v W acceptedValue=v
Prepare(2) Promise(2,1, v) Propose(2,v) Accept(2,v)

minBallot=1
acceptedBallot=1
acceptedValue=v

\\

minBallot=2

acceptedBallot=1

\\

minBallot=2

acceptedBallot=2

/

minBallot=1
acceptedBallot=-1

acceptedValue=v

Promise(2,-1, nil)

minBallot=2

acceptedBallot=-1

fom o\ L]
dllcplicuvaluc=v

minBallot=2

' acceptedBallot=2

acceptedVatue=nit

acceptedValue=nil

acceptedValue=v

Proofs

Validity: trivially satisfied

Agreement: if a value is decided by at
least one node, then all the future
proposers will learn that value in the
prepare-promise phase (quorum
intersection)

Termination: If the network is
synchronous for 4 A with only a single
proposer

Propose
Prepare Accgpt am
Promise
A\ \
Promise Propase ccept
Prepar Ldarn

Liveness with multiple leaders

/

N

repare

Prepare

epare
Prepare

-

Livelock
Ptepare
repare

repare

repare

\ S\ource: Baxos

Ensuring Liveness

e |eader based Paxos - Multi-Paxos
o Eliminate Prepare-Promise phase

e Random back off - Baxos
o Optimistic contention handling

=

PrL

Random back off

Prep pose
epare Prepare Pro A¢cept
Replica 2 eplica 1
Backs off 4 Proposes
Accept
Prepare Prepare Kepap Propose
romise

Source: Baxos

I
"1

Multi-Paxos
self-appoint as wait for wait for
command leader majority majority
k@ : W b : Pi back
: gzﬁgt“é't?g bou 'tf,’ E command ¢? "OK" | Ig::?oym mit ¢
Follower:
Follower: \\ / & \\\ / a2 \\\A_>
Y B2 AL A\"i¢

FoIIowerf \

Follower:

Ny

Phase: phase-1a phase-1b phase-2a phase-2b phase-3
Propose Promise Accept Accepted Commit

A

Repeat Many Times

Source: https://www.researchgate.net/figure/Multi-Paxos-optimization_fig1_339998273

Questions?

