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Astrophysics I11I: Stellar and galactic dynamics

Solutions

Preface: Gauss’s law Many of the exercises of this series are much easier to deal
with when using an integrated version of our usual Poisson’s equation: Gauss’s law for
gravity. Starting from Poisson’s equation, we integrate on an arbitrary volume:

4rGp = V?®

47rG/d3x,0:/d3xV2<I>
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The integral of the left hand side is the mass enclosed in the volume V', M. The right
hand side can be rewritten as a surface integral using the divergence theorem:

ArGM = | dS -V,
ov

where 0V is the surface encapsulating V.

Problem 1:

Using the following relations for spherical systems, derived during the lectures :
the Poisson equation in Spherical coordinates :

L d (ﬁd—@) — 4G p(r) (1)

r2dr dr

the mass inside a radius r due to a spherical distribution of matter p(r’) :

M(r) =4r /7‘ dr' ' p(r'), (2)

0
the gravitational field due to a spherical distribution of matter p(r’)

gy = ~ M0 5 3)

r2

the potential due to a spherical distribution of matter p(r’)

GM >
o(ry = ~SMO) g / p(r)r'dr (4)
r T
the gradient of the potential due to a spherical distribution of matter p(r’)
d® G M(r)
el 5
dr rz (5)

we can express p(r), ®(r), M(r) and 4 as a function of respectively p(r), ®(r),
M(r) and 92 :



e as a function of p(r): -
e as a function of ®(r): use the Poisson equation Eq. (1)
e as a function of M(r): use Eq. (2)

e as a function of 92: compute the first derivative of M(r) from Eq. (2)

e as a function of p(r): use Eq. (4)
e as a function of ®(r): -
e as a function of M (r): integrate Eq. (5)

e as a function of %: integrate ®(r)

M(r)
e as a function of p(r): use Eq. (2)
e as a function of ®(r): use Eq. (5)

e as a function of M(r): -

e as a function of 92: use Eq. (5)

de
dr

e as a function of p(r): use Eq. (5) and express M (r) with Eq. (2)
e as a function of ®(r): compute the first derivative of ®(r)
e as a function of M(r): use Eq. (5)

e as a function of %: -

Problem 2:

We set up our coordinates such that the slab lays on the z = 0 plane. As the mass
distribution is discontinuous, we cannot easily rely on the Poisson equation to derive
the corresponding potential. We instead use Gauss’s law:

/ Vo -dS = 47G Mg, (6)
S

where S is any surface and Mg is the mass enclosed by the surface S. Let us define S
to be the surface of a cylinder perpendicular to the plane z = 0. By symmetry (the
surface density of the plane is constant) :

Vo = %CI)(Z) &, and  =—®(2) = —=—d(—2). (7)



Thus, in the integral (6) the surface perpendicular to the plane z = 0 does not con-
tribute and we get :

- = 0
/SV<P -dS = 2£CI>(2) As. (8)

where As is the surface of the cylinder parallel to the plane z = 0. The mass enclosed
in the cylinder is :

MS = As EO (9)
and (8) with (9) and (6) give :
0
Qa—CI)(z) As = 471G As ¥y. (10)
z
This leads to : P
-0(2) = 271G %, (11)
and after integration :
O(2) = 271G Xy z + const. (12)

Problem 3:

We consider a wire aligned with the x axis. As the mass distribution is discontinu-
ous, we cannot rely on the Poisson equation to derive the corresponding potential. We
instead rely on the Gauss Theorem :

/ V- dS = 4rG Ms, (13)
S

where S is any surface and Mg is the mass enclosed by the surface S. Let us define
S to be the surface of a cylinder of length Az and radius R, with its symmetry axis
being the axis x, i.e., the wire. The surface As parallel to the = axis is:

As =21R Axz, (14)

and the enclosed mass is :
Mg = Ny Az. (15)

By symmetry (the linear density of the wire is constant) :

— 8 -
where €p is perpendicular to the axis z. With (14), (15) and (16), the Gauss theorem
becomes :

/ Vo -dS = 2rR Ax ic1>(1-z) = 47G N\ Ax, (17)
s OR
which leads to :
9 o(r) =262 (18)
OR TR

and after integrating over the radius R :

O(R) = 2G Ao In(R) + const, (19)
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Problem 4:
From Poisson’s equation in spherical coordinates we get:
V20 = 47Gp
V2® written in spherical coordinates, and considering a spherical potential we get:
10 0P
vo- o (%)
a lot of straight-forward algebra follows, but finally we get

2
v 1
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The circular velocity also follows simply:

2 0o . m(1+2)|  m(1+2) |
v, = r—=rv; |— + 3 = Uy T -
or - (1 + [—S> r (1) - (1 + i)
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Problem 5:

As per problem 4, the isochrone p is straightforward to derive, taking the form:

3(b+ a)a* — r*(b + 3a) '
=M th a=vb2+r2
P [ 47(b+ a)a® Wit a T

The circular velocity is
9 GMr?

Ve = (b+a)?a

Problem 6:

Let’s define a unit surface on the disk, corresponding to a mass ¥, which is then
the surface density. Defining a slab enclosing the unit surface and making its thickness
tend to a vanishing value (¢ — 0, see Fig. 1), the surface integral reduces to twice the
gradient of the potential:

ATGY = /dQSVCI)K = Qaﬁ
0z
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Figure 1: The Kuzmin disk with the unit surface (left) and seen edge-on (right), with
the 2¢ thick slab, on the surface of which the integration is made.

We have

0dk 0
0z 0z

= GM[R*+ (a+ |22 (a+|2)

With |z| — 0, we then have:

4 GZK =

=Yg =

Problem 7:

aM

m (R? + a2)*?

The velocity curve may be obtained from the formula (see course: result from a
razor-thin homeoid since we cannot use Gauss law here):

R
v2(R) = —4G

C

a
; da——R2 = a2 @

d /OO dR’R/Z—(R/) (20)

R/2 _ a2

Replacing ¥(R') using the Mestel’s surface density we get:

OOdR/ RIZ(R/)

2 0
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vg [T d
0 /a dR/@ (arccosh(R/a))

Yo [arccosh(Ryax/a) — arccosh(1)]

UOG arccosh(Ryax/a)
(21)



The derivative with respect to a of this latter result writes:

d (v h(Ruax/a) i d, ccosh(Rpax/a)
— arccosh(Ryax/a = —ar max/ @
da \ 27G 271G da
L vg Rinax 1
N QWG,/RIQHaX—QZCL
(22)
which, in the limit R, — oo gives:
2
Yo
_ 23
2Ga (23)
This leads to the circular velocity:
ng (B 1
v2(R) = % da
T 0 RQ _ aQ
(24)



