Astrophysics III: Stellar and galactic dynamics Solutions

Preface: Gauss's law Many of the exercises of this series are much easier to deal with when using an integrated version of our usual Poisson's equation: Gauss's law for gravity. Starting from Poisson's equation, we integrate on an arbitrary volume:

$$
\begin{aligned}
4 \pi G \rho & =\nabla^{2} \Phi \\
4 \pi G \int_{V} \mathrm{~d}^{3} \mathbf{x} \rho & =\int_{V} \mathrm{~d}^{3} \mathbf{x} \nabla^{2} \Phi
\end{aligned}
$$

The integral of the left hand side is the mass enclosed in the volume V, M. The right hand side can be rewritten as a surface integral using the divergence theorem:

$$
4 \pi G M=\int_{\partial V} \mathrm{~d} \vec{S} \cdot \nabla \Phi
$$

where ∂V is the surface encapsulating V.

Problem 1:

Using the following relations for spherical systems, derived during the lectures : the Poisson equation in Spherical coordinates:

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}\right)=4 \pi G \rho(r) \tag{1}
\end{equation*}
$$

the mass inside a radius r due to a spherical distribution of matter $\rho\left(r^{\prime}\right)$:

$$
\begin{equation*}
M(r)=4 \pi \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime 2} \rho\left(r^{\prime}\right) \tag{2}
\end{equation*}
$$

the gravitational field due to a spherical distribution of matter $\rho\left(r^{\prime}\right)$

$$
\begin{equation*}
\vec{g}(r)=-\frac{G M(r)}{r^{2}} \cdot \vec{e}_{r}, \tag{3}
\end{equation*}
$$

the potential due to a spherical distribution of matter $\rho\left(r^{\prime}\right)$

$$
\begin{equation*}
\Phi(r)=-\frac{G M(r)}{r}-4 \pi G \int_{r}^{\infty} \rho\left(r^{\prime}\right) r^{\prime} \mathrm{d} r^{\prime} \tag{4}
\end{equation*}
$$

the gradient of the potential due to a spherical distribution of matter $\rho\left(r^{\prime}\right)$

$$
\begin{equation*}
\frac{\mathrm{d} \Phi}{\mathrm{~d} r}=\frac{G M(r)}{r^{2}} \tag{5}
\end{equation*}
$$

we can express $\rho(r), \Phi(r), M(r)$ and $\frac{\mathrm{d} \Phi}{\mathrm{d} r}$ as a function of respectively $\rho(r), \Phi(r)$, $M(r)$ and $\frac{\mathrm{d} \Phi}{\mathrm{d} r}$:
$\rho(r)$

- as a function of $\rho(r)$:-
- as a function of $\Phi(r)$: use the Poisson equation Eq. (1)
- as a function of $M(r)$: use Eq. (2)
- as a function of $\frac{\mathrm{d} \Phi}{\mathrm{d} r}$: compute the first derivative of $M(r)$ from Eq. (2)
$\Phi(r)$
- as a function of $\rho(r)$: use Eq. (4)
- as a function of $\Phi(r)$: -
- as a function of $M(r)$: integrate Eq. (5)
- as a function of $\frac{\mathrm{d} \Phi}{\mathrm{d} r}$: integrate $\Phi(r)$
$M(r)$
- as a function of $\rho(r)$: use Eq. (2)
- as a function of $\Phi(r)$: use Eq. (5)
- as a function of $M(r)$:
- as a function of $\frac{\mathrm{d} \Phi}{\mathrm{d} r}$: use Eq. (5)
$\frac{\mathrm{d} \Phi}{\mathrm{d} r}$
- as a function of $\rho(r)$: use Eq. (5) and express $M(r)$ with Eq. (2)
- as a function of $\Phi(r)$: compute the first derivative of $\Phi(r)$
- as a function of $M(r)$: use Eq. (5)
- as a function of $\frac{\mathrm{d} \Phi}{\mathrm{d} r}$: -

Problem 2:

We set up our coordinates such that the slab lays on the $z=0$ plane. As the mass distribution is discontinuous, we cannot easily rely on the Poisson equation to derive the corresponding potential. We instead use Gauss's law:

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot \mathrm{~d} \vec{S}=4 \pi G M_{S} \tag{6}
\end{equation*}
$$

where S is any surface and M_{S} is the mass enclosed by the surface S. Let us define S to be the surface of a cylinder perpendicular to the plane $z=0$. By symmetry (the surface density of the plane is constant) :

$$
\begin{equation*}
\vec{\nabla} \Phi=\frac{\partial}{\partial z} \Phi(z) \cdot \vec{e}_{z} \quad \text { and } \quad \frac{\partial}{\partial z} \Phi(z)=-\frac{\partial}{\partial z} \Phi(-z) . \tag{7}
\end{equation*}
$$

Thus, in the integral (6) the surface perpendicular to the plane $z=0$ does not contribute and we get :

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot \mathrm{~d} \vec{S}=2 \frac{\partial}{\partial z} \Phi(z) \Delta s \tag{8}
\end{equation*}
$$

where Δs is the surface of the cylinder parallel to the plane $z=0$. The mass enclosed in the cylinder is :

$$
\begin{equation*}
M_{S}=\Delta s \Sigma_{0} \tag{9}
\end{equation*}
$$

and (8) with (9) and (6) give :

$$
\begin{equation*}
2 \frac{\partial}{\partial z} \Phi(z) \Delta s=4 \pi G \Delta s \Sigma_{0} . \tag{10}
\end{equation*}
$$

This leads to :

$$
\begin{equation*}
\frac{\partial}{\partial z} \Phi(z)=2 \pi G \Sigma_{0} \tag{11}
\end{equation*}
$$

and after integration :

$$
\begin{equation*}
\Phi(z)=2 \pi G \Sigma_{0} z+\text { const. } \tag{12}
\end{equation*}
$$

Problem 3:

We consider a wire aligned with the x axis. As the mass distribution is discontinuous, we cannot rely on the Poisson equation to derive the corresponding potential. We instead rely on the Gauss Theorem :

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot \mathrm{~d} \vec{S}=4 \pi G M_{S} \tag{13}
\end{equation*}
$$

where S is any surface and M_{S} is the mass enclosed by the surface S. Let us define S to be the surface of a cylinder of length Δx and radius R, with its symmetry axis being the axis x, i.e., the wire. The surface Δs parallel to the x axis is:

$$
\begin{equation*}
\Delta s=2 \pi R \Delta x \tag{14}
\end{equation*}
$$

and the enclosed mass is :

$$
\begin{equation*}
M_{S}=\lambda_{0} \Delta x \tag{15}
\end{equation*}
$$

By symmetry (the linear density of the wire is constant) :

$$
\begin{equation*}
\vec{\nabla} \Phi=\frac{\partial}{\partial R} \Phi(R) \vec{e}_{R} \tag{16}
\end{equation*}
$$

where \vec{e}_{R} is perpendicular to the axis x. With (14), (15) and (16), the Gauss theorem becomes:

$$
\begin{equation*}
\int_{S} \vec{\nabla} \Phi \cdot \mathrm{~d} \vec{S}=2 \pi R \Delta x \frac{\partial}{\partial R} \Phi(R)=4 \pi G \lambda_{0} \Delta x \tag{17}
\end{equation*}
$$

which leads to :

$$
\begin{equation*}
\frac{\partial}{\partial R} \Phi(R)=2 G \frac{\lambda_{0}}{R} \tag{18}
\end{equation*}
$$

and after integrating over the radius R :

$$
\begin{equation*}
\Phi(R)=2 G \lambda_{0} \ln (R)+\text { const } \tag{19}
\end{equation*}
$$

Problem 4:

From Poisson's equation in spherical coordinates we get:

$$
\nabla^{2} \Phi=4 \pi G \rho
$$

$\nabla^{2} \Phi$ written in spherical coordinates, and considering a spherical potential we get:

$$
\nabla^{2} \Phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi}{\partial r}\right)
$$

a lot of straight-forward algebra follows, but finally we get

$$
\rho=\frac{v_{s}^{2}}{4 \pi G r_{s}^{2}} \frac{1}{\left(r / r_{s}\right)\left(1+r / r_{s}\right)^{2}}
$$

The circular velocity also follows simply:

$$
\begin{aligned}
v_{c}^{2} & =r \frac{\partial \Phi}{\partial r}=r v_{s}^{2}\left[-\frac{1}{\frac{r}{r_{s}}\left(1+\frac{r}{r_{s}}\right)}+\frac{\ln \left(1+\frac{r}{r_{s}}\right)}{r_{s}\left(\frac{r}{r_{s}}\right)^{2}}\right]=v_{s}^{2}\left[\frac{\ln \left(1+\frac{r}{r_{s}}\right)}{\frac{r}{r_{s}}}-\frac{1}{\left(1+\frac{r}{r_{s}}\right)}\right] \\
& =v_{s}^{2}\left[\frac{\left(1+\frac{r}{r_{s}}\right) \ln \left(1+\frac{r}{r_{s}}\right)-\frac{r}{r_{s}}}{\frac{r}{r_{s}}\left(1+\frac{r}{r_{s}}\right)}\right]=v_{s}^{2} \frac{\left(r_{s}+r\right) r_{s} \ln \left(1+\frac{r}{r_{s}}\right)-r r_{s}}{r\left(r_{s}+r\right)}
\end{aligned}
$$

Problem 5:

As per problem 4, the isochrone ρ is straightforward to derive, taking the form:

$$
\rho=M\left[\frac{3(b+a) a^{2}-r^{2}(b+3 a)}{4 \pi(b+a)^{3} a^{3}}\right] \quad \text { with } \quad a \equiv \sqrt{b^{2}+r^{2}}
$$

The circular velocity is

$$
v_{c}^{2}=\frac{G M r^{2}}{(b+a)^{2} a}
$$

Problem 6:

Let's define a unit surface on the disk, corresponding to a mass Σ, which is then the surface density. Defining a slab enclosing the unit surface and making its thickness tend to a vanishing value $(\varepsilon \rightarrow 0$, see Fig. 1), the surface integral reduces to twice the gradient of the potential:

$$
4 \pi G \Sigma=\int \mathrm{d}^{2} \mathbf{S} \nabla \Phi_{\mathrm{K}}=2 \frac{\partial \Phi_{\mathrm{K}}}{\partial z}
$$

Figure 1: The Kuzmin disk with the unit surface (left) and seen edge-on (right), with the 2ε thick slab, on the surface of which the integration is made.

We have

$$
\begin{aligned}
\frac{\partial \Phi_{\mathrm{K}}}{\partial z} & =\frac{\partial}{\partial z}\left[-G M\left[R^{2}+(a+|z|)^{2}\right]^{-1 / 2}\right] \\
& =G M\left[R^{2}+(a+|z|)^{2}\right]^{-3 / 2}(a+|z|)
\end{aligned}
$$

With $|z| \rightarrow 0$, we then have:

$$
\begin{aligned}
4 \pi G \Sigma_{\mathrm{K}} & =2 \frac{\partial \Phi_{\mathrm{K}}}{\partial z}=2 a G M\left[R^{2}+a^{2}\right]^{-3 / 2} \\
\Rightarrow \Sigma_{\mathrm{K}} & =\frac{a M}{2 \pi\left(R^{2}+a^{2}\right)^{3 / 2}}
\end{aligned}
$$

Problem 7:

The velocity curve may be obtained from the formula (see course: result from a razor-thin homeoid since we cannot use Gauss law here):

$$
\begin{equation*}
v_{\mathrm{c}}^{2}(R)=-4 G \int_{0}^{R} \mathrm{~d} a \frac{a}{\sqrt{R^{2}-a^{2}}} \frac{\mathrm{~d}}{\mathrm{~d} a} \int_{a}^{\infty} \mathrm{d} R^{\prime} \frac{R^{\prime} \Sigma\left(R^{\prime}\right)}{\sqrt{R^{\prime 2}-a^{2}}} \tag{20}
\end{equation*}
$$

Replacing $\Sigma\left(R^{\prime}\right)$ using the Mestel's surface density we get:

$$
\begin{align*}
\int_{a}^{\infty} \mathrm{d} R^{\prime} \frac{R^{\prime} \Sigma\left(R^{\prime}\right)}{\sqrt{R^{\prime 2}-a^{2}}} & =\frac{v_{0}^{2}}{2 \pi G} \int_{a}^{\infty} \mathrm{d} R^{\prime} \frac{1}{\sqrt{R^{\prime 2}-a^{2}}} \\
& =\frac{v_{0}^{2}}{2 \pi G} \int_{a}^{R_{\max }} \mathrm{d} R^{\prime} \frac{1}{\sqrt{\left(R^{\prime} / a\right)^{2}-1}} \frac{1}{a} \\
& =\frac{v_{0}^{2}}{2 \pi G} \int_{a}^{R_{\max }} \mathrm{d} R^{\prime} \frac{\mathrm{d}}{\mathrm{~d} R}(\operatorname{arccosh}(R / a)) \\
& =\frac{v_{0}^{2}}{2 \pi G}\left[\operatorname{arccosh}\left(R_{\max } / a\right)-\operatorname{arccosh}(1)\right] \\
& =\frac{v_{0}^{2}}{2 \pi G} \operatorname{arccosh}\left(R_{\max } / a\right) \tag{21}
\end{align*}
$$

The derivative with respect to a of this latter result writes:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} a}\left(\frac{v_{0}^{2}}{2 \pi G} \operatorname{arccosh}\left(R_{\max } / a\right)\right) & =\frac{v_{0}^{2}}{2 \pi G} \frac{\mathrm{~d}}{\mathrm{~d} a} \operatorname{arccosh}\left(R_{\max } / a\right) \\
& =-\frac{v_{0}^{2}}{2 \pi G} \frac{R_{\max }}{\sqrt{R_{\max }^{2}-a^{2}}} \frac{1}{a} \tag{22}
\end{align*}
$$

which, in the limit $R_{\max } \rightarrow \infty$ gives:

$$
\begin{equation*}
-\frac{v_{0}^{2}}{2 \pi G a} \tag{23}
\end{equation*}
$$

This leads to the circular velocity:

$$
\begin{align*}
v_{\mathrm{c}}^{2}(R) & =\frac{2 v_{0}^{2}}{\pi} \int_{0}^{R} \mathrm{~d} a \frac{1}{\sqrt{R^{2}-a^{2}}} \\
& =v_{0}^{2} \tag{24}
\end{align*}
$$

