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Astrophysics III: Stellar and galactic dynamics
Solutions

Preface: Gauss’s law Many of the exercises of this series are much easier to deal
with when using an integrated version of our usual Poisson’s equation: Gauss’s law for
gravity. Starting from Poisson’s equation, we integrate on an arbitrary volume:

4πGρ = ∇2Φ

4πG

∫
V

d3x ρ =

∫
V

d3x∇2Φ

The integral of the left hand side is the mass enclosed in the volume V , M . The right
hand side can be rewritten as a surface integral using the divergence theorem:

4π GM =

∫
∂V

d⃗S · ∇Φ,

where ∂V is the surface encapsulating V .

Problem 1:
Using the following relations for spherical systems, derived during the lectures :
the Poisson equation in Spherical coordinates :

1

r2
d

dr

(
r2
dΦ

dr

)
= 4π Gρ(r) (1)

the mass inside a radius r due to a spherical distribution of matter ρ(r′) :

M(r) = 4π

∫ r

0

dr′ r′
2
ρ(r′), (2)

the gravitational field due to a spherical distribution of matter ρ(r′)

g⃗(r) = −GM(r)

r2
· e⃗r, (3)

the potential due to a spherical distribution of matter ρ(r′)

Φ(r) = −GM(r)

r
− 4πG

∫ ∞

r

ρ(r′)r′dr′, (4)

the gradient of the potential due to a spherical distribution of matter ρ(r′)

dΦ

dr
=

GM(r)

r2
, (5)

we can express ρ(r), Φ(r), M(r) and dΦ
dr

as a function of respectively ρ(r), Φ(r),
M(r) and dΦ

dr
:
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ρ(r)

• as a function of ρ(r): -

• as a function of Φ(r): use the Poisson equation Eq. (1)

• as a function of M(r): use Eq. (2)

• as a function of dΦ
dr

: compute the first derivative of M(r) from Eq. (2)

Φ(r)

• as a function of ρ(r): use Eq. (4)

• as a function of Φ(r): -

• as a function of M(r): integrate Eq. (5)

• as a function of dΦ
dr

: integrate Φ(r)

M(r)

• as a function of ρ(r): use Eq. (2)

• as a function of Φ(r): use Eq. (5)

• as a function of M(r): -

• as a function of dΦ
dr

: use Eq. (5)

dΦ
dr

• as a function of ρ(r): use Eq. (5) and express M(r) with Eq. (2)

• as a function of Φ(r): compute the first derivative of Φ(r)

• as a function of M(r): use Eq. (5)

• as a function of dΦ
dr

: -

Problem 2:
We set up our coordinates such that the slab lays on the z = 0 plane. As the mass

distribution is discontinuous, we cannot easily rely on the Poisson equation to derive
the corresponding potential. We instead use Gauss’s law:∫

S

∇⃗Φ · dS⃗ = 4πGMS, (6)

where S is any surface and MS is the mass enclosed by the surface S. Let us define S
to be the surface of a cylinder perpendicular to the plane z = 0. By symmetry (the
surface density of the plane is constant) :

∇⃗Φ =
∂

∂z
Φ(z) · e⃗z and

∂

∂z
Φ(z) = − ∂

∂z
Φ(−z). (7)
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Thus, in the integral (6) the surface perpendicular to the plane z = 0 does not con-
tribute and we get : ∫

S

∇⃗Φ · dS⃗ = 2
∂

∂z
Φ(z)∆s. (8)

where ∆s is the surface of the cylinder parallel to the plane z = 0. The mass enclosed
in the cylinder is :

MS = ∆sΣ0 (9)

and (8) with (9) and (6) give :

2
∂

∂z
Φ(z)∆s = 4πG∆sΣ0. (10)

This leads to :
∂

∂z
Φ(z) = 2πGΣ0, (11)

and after integration :
Φ(z) = 2πGΣ0 z + const. (12)

Problem 3:

We consider a wire aligned with the x axis. As the mass distribution is discontinu-
ous, we cannot rely on the Poisson equation to derive the corresponding potential. We
instead rely on the Gauss Theorem :∫

S

∇⃗Φ · dS⃗ = 4πGMS, (13)

where S is any surface and MS is the mass enclosed by the surface S. Let us define
S to be the surface of a cylinder of length ∆x and radius R, with its symmetry axis
being the axis x, i.e., the wire. The surface ∆s parallel to the x axis is:

∆s = 2πR ∆x, (14)

and the enclosed mass is :
MS = λ0 ∆x. (15)

By symmetry (the linear density of the wire is constant) :

∇⃗Φ =
∂

∂R
Φ(R) e⃗R, (16)

where e⃗R is perpendicular to the axis x. With (14), (15) and (16), the Gauss theorem
becomes : ∫

S

∇⃗Φ · dS⃗ = 2πR∆x
∂

∂R
Φ(R) = 4πGλ0 ∆x, (17)

which leads to :
∂

∂R
Φ(R) = 2G

λ0

R
, (18)

and after integrating over the radius R :

Φ(R) = 2Gλ0 ln(R) + const, (19)
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Problem 4:

From Poisson’s equation in spherical coordinates we get:

∇2Φ = 4πGρ

∇2Φ written in spherical coordinates, and considering a spherical potential we get:

∇2Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
a lot of straight-forward algebra follows, but finally we get

ρ =
v2s

4πGr2s

1

(r/rs)(1 + r/rs)2

The circular velocity also follows simply:

v2c = r
∂Φ

∂r
= r v2s

− 1

r
rs

(
1 + r

rs

) +
ln
(
1 + r

rs

)
rs

(
r
rs

)2

 = v2s

 ln
(
1 + r

rs

)
r
rs

− 1(
1 + r

rs

)


= v2s


(
1 + r

rs

)
ln
(
1 + r

rs

)
− r

rs

r
rs

(
1 + r

rs

)
 = v2s

(rs + r) rs ln
(
1 + r

rs

)
− r rs

r (rs + r)

Problem 5:

As per problem 4, the isochrone ρ is straightforward to derive, taking the form:

ρ = M

[
3(b+ a)a2 − r2(b+ 3a)

4π(b+ a)3a3

]
with a ≡

√
b2 + r2

The circular velocity is

v2c =
GMr2

(b+ a)2a

Problem 6:

Let’s define a unit surface on the disk, corresponding to a mass Σ, which is then
the surface density. Defining a slab enclosing the unit surface and making its thickness
tend to a vanishing value (ε → 0, see Fig. 1), the surface integral reduces to twice the
gradient of the potential:

4π GΣ =

∫
d2S∇ΦK = 2

∂ΦK

∂z
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Figure 1: The Kuzmin disk with the unit surface (left) and seen edge-on (right), with
the 2ε thick slab, on the surface of which the integration is made.

We have

∂ΦK

∂z
=

∂

∂z

[
−GM

[
R2 + (a+ |z|)2

]−1/2
]

= GM
[
R2 + (a+ |z|)2

]−3/2
(a+ |z|)

With |z| → 0, we then have:

4π GΣK = 2
∂ΦK

∂z
= 2aGM

[
R2 + a2

]−3/2

⇒ ΣK =
aM

2π (R2 + a2)3/2

Problem 7:

The velocity curve may be obtained from the formula (see course: result from a
razor-thin homeoid since we cannot use Gauss law here):

v2c (R) = −4G

∫ R

0

da
a√

R2 − a2
d

da

∫ ∞

a

dR′ R′Σ(R′)√
R′2 − a2

(20)

Replacing Σ(R′) using the Mestel’s surface density we get:

∫ ∞

a

dR′ R′Σ(R′)√
R′2 − a2

=
v20
2πG

∫ ∞

a

dR′ 1√
R′2 − a2

=
v20
2πG

∫ Rmax

a

dR′ 1√
(R′/a)2 − 1

1

a

=
v20
2πG

∫ Rmax

a

dR′ d

dR
(arccosh(R/a))

=
v20
2πG

[arccosh(Rmax/a)− arccosh(1)]

=
v20
2πG

arccosh(Rmax/a)

(21)

5



The derivative with respect to a of this latter result writes:

d

da

(
v20
2πG

arccosh(Rmax/a)

)
=

v20
2πG

d

da
arccosh(Rmax/a)

= − v20
2πG

Rmax√
R2

max − a2
1

a

(22)

which, in the limit Rmax → ∞ gives:

− v20
2πGa

(23)

This leads to the circular velocity:

v2c (R) =
2v20
π

∫ R

0

da
1√

R2 − a2

= v20
(24)
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