Sections MX-SC-CGC

24 octobre 2022

Analyse I – Série 5

Echauffement. (Infimum, Supremum)

Soit $a_n = \frac{5n}{2n+1}$, $n \in \mathbb{N}$. Soit $A = \{a_n : n \in \mathbb{N}\}$. Calculer

a) Inf A

b) Sup A

Exercice 1. (Définition de la limite)

Soit (u_n) une suite de réels positifs vérifiant $u_n \leq \frac{1}{k} + \frac{k}{n}$ pour tous $(k,n) \in (\mathbb{N}^*)^2$. Démontrer que (u_n) tend vers 0 en utilisant la définition de la limite.

Exercice 2. (Critères de convergence, cours)

- (i) Montrer que toute suite convergente est bornée (sans regarder la preuve du cours!).
- (ii) Soit (a_n) une suite. Montrer que si $\lim_{n\to+\infty} a_n = +\infty$ alors la suite est divergente. (Dans ce cas on dit que (a_n) diverge vers $+\infty$.)

Exercice 3. (Lois algébriques, cours)

Montrer que si $\lim_{n\to\infty} a_n = a$ et $\lim_{n\to\infty} b_n = b \neq 0$ alors

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}.$$

Exercice 4. (Propriétés algébriques de la limite)

Soit $a_n = \frac{3n}{n+2}$ pour $n \in \mathbb{N}^*$. Calculer

a)
$$\lim_{n\to\infty} a_n$$

b)
$$\lim_{n\to\infty} \frac{1}{a_n}$$

c)
$$\lim_{n\to\infty} \left(\frac{a_n}{3} + \frac{3}{a_n}\right)$$

Exercice 5. (Existence de limites)

Déterminer, si elle existe, la limite $n \to \infty$ de la suite $(a_n)_{n \ge 1}$ avec

a)
$$a_n = \frac{5n^2 - 3n + 2}{3n^2 + 7}$$
 b) $a_n = (-1)^n \frac{\sqrt[4]{n}}{\sqrt[3]{n}}$ c) $a_n = \frac{\sqrt{n^2 + 2}}{2n}$

b)
$$a_n = (-1)^n \frac{\sqrt[4]{n}}{\sqrt[3]{n}}$$

$$c) a_n = \frac{\sqrt{n^2 + 2}}{2n}$$

Indication: Pour c), on pourra utiliser (après l'avoir démontrée) l'inégalité suivante : $1 \le \sqrt{1+x} \le$ $1 + \frac{x}{2} \ \forall x \ge 0,.$

Exercice 6. (Propriétés des suites)

Dans chacun des cas suivants, déterminer si la suite (a_n) est monotone; trouver, s'il existe, le supremum et l'infimum de la suite et décider s'il s'agit d'un maximum ou d'un minimum.

a)
$$a_n = n^2 - 4n + 1, \ n \in \mathbb{N}$$

a)
$$a_n = n^2 - 4n + 1$$
, $n \in \mathbb{N}$ b) $a_n = \frac{n}{3n - 1}$, $n \in \mathbb{N}^*$ c) $a_n = \frac{n}{3n - 1}$, $n \in \mathbb{N}$

c)
$$a_n = \frac{n}{3n-1}, n \in \mathbb{N}$$

Exercice 7. (Calcul de limites)

Calculer la limite lorsque $n \to \infty$ de la suite $(a_n)_{n \ge 1}$ avec

a)
$$a_n = \sqrt{n+2} - \sqrt{n}$$

b)
$$a_n = \frac{n!}{n^n}$$
 c) $a_n = \frac{2^n}{n!}$

c)
$$a_n = \frac{2^n}{n!}$$

Indication: pour a), vous pouvez multiplier le numérateur et le dénominateur par $\sqrt{n+2} + \sqrt{n}$ (c'est une astuce classique à maîtriser!).

Exercice 8.(*) (Fonction exponentielle)

À partir de la limite $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ (admise), calculer les limites suivantes.

a)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n$$
 b) $\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$ c) $\lim_{n \to \infty} \left(1 - \frac{1}{n^2} \right)^n$

b)
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$$

c)
$$\lim_{n \to \infty} \left(1 - \frac{1}{n^2}\right)^n$$

Exercice 9. (Croissance)

Pour chaque suite ci-dessous étudier sa croissance (c'est-à-dire, dire si elle est (strictement) croissante ou décroissante ou ni l'un ni l'autre). Pour les suites dépendant d'un paramètre, discuter des différents cas possibles.

a)
$$x_n = n^2 + 3n + 2$$

b)
$$x_n = \cos(\frac{n\pi}{4})$$

c)
$$x_n = \frac{3^n}{2^{n+1}}$$

d)
$$x_n = r^n$$
 (suite géométrique de raison $r \in \mathbb{R}$)

e)
$$x_n = nr + b$$
 (suite arithmétique de raison $r \in \mathbb{R}$ avec $b \in \mathbb{R}$)

f)
$$x_n$$
 définie par $x_0 = 1$ et $x_{n+1} = \frac{x_n - 3}{2}$ pour tout $n \in \mathbb{N}$.

g)
$$x_n$$
 définie par $x_0 = 0$ et $x_{n+1} = \frac{x_n^2 + 2}{2\sqrt{2}}$ pour tout $n \in \mathbb{N}$.

Exercice 10. (V/F : suites)

Répondre par VRAI si l'affirmation est toujours vraie ou par FAUX si elle n'est pas toujours vraie. Soit (a_n) une suite numérique.

Q1 : Si (a_n) est bornée, alors (a_n) converge.

Q2: Si $\lim_{n\to\infty} a_n = 0$, alors $\lim_{n\to\infty} (a_n \sin(n)) = 0$

Q3 : Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, alors (a_n) diverge.

Q4 : Si (a_n) converge, alors il existe M > 0 tel que $|a_n| \leq M$ pour tout $n \in \mathbb{N}$.

Q5 : Si $\lim_{n\to\infty} a_n = a$, alors il existe $\delta > 0$ tel que $|a_n - a| \le \delta$ pour tout $n \in \mathbb{N}$.

Exercice 11. (Suites adjacentes) Considérons les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ définies par

$$u_n = \sum_{i=0}^n \frac{1}{i!} = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$$
 et $v_n = u_n + \frac{1}{nn!}$.

Montrer que (u_n) est croissante, que (v_n) est décroissante et que $(u_n - v_n)$ tend vers 0. En déduire que la suite (u_n) converge (on pourra faire appel à un théorème du cours). (Nous verrons plus tard que $\lim_{n\to\infty} u_n = \exp(1)$.)