
CS-438 - Decentralized Systems Engineering, Fall 2022

Homework 2
Data sharing

Author DEDIS lab, EPFL
Revision October 2022 - 1.1.0

Publish date Friday, October 21, 2022
Due date Tuesday, November 8, 2022 @ 23:55

Table of contents

Table of contents 1

Introduction 1
End result 1
Objectives 3
File sharing 3

Chunks 3
MetaFile and MetaHash 3

Name and metahash 4
Catalog 4
File Download 4

Details 5
Name search “all” 5
Name search “first” 6
Search duplicates 6

Your tasks 7
Before you begin: New messages introduced 7

DataRequestMessage 7
DataReplyMessage 7
SearchRequestMessage 7
SearchReplyMessage 8

Before you begin: Introduction to the storage interface 8
Task 0: Think about asynchronous notification 8
Task 1: Implement the Upload function 9
Task 2: Implement the catalog-related functions 9
Task 3: Implement the Download function and process DataReplyMessage 10
Task 4: Process DataRequestMessage 10
Task 5: Implement the Tag and Resolve function 10
Task 6: Implement the SearchAll function and process SearchReplyMessage 11
Task 7: Process SearchRequestMessage 11
Task 8: Implement the SearchFirst function 12

Try your program 12

Appendix A - Tests definitions 13
Upload 13
Catalog 13
Download 14
Naming 15

SearchAll 16
SearchFirst 18
Scenario 21
Integration test 22

Introduction

End result
In this homework you are going to implement a new module for your Peerster related to file
sharing . This new module has four main parts: (1) Data upload, (2) Data download, (3)1

Search and index, and (4) Naming. This new module, with functionalities similar to a system
like bittorrent, is mostly independent from what you implemented in HW1.

The data upload part allows a peer to share a new file on the Peerster system. Once a file is
shared (i.e. uploaded) by a peer, other peers can use the download part to get the file. The
search and index parts provide the discovery of available files on the Peerster system. This
part is needed because peers will have to proactively look for available files. Finally, the
naming part is a convenient way to assign a file a custom, easy-to-remember name. This is
because, as you will see, files will be stored and referenced by metahash, a unique
representation of a file based on its content. Figure 1 shows the updated web GUI with the
new parts.

A typical workflow will be:

1. Upload a file, which returns a unique identifier M of the file (metahash)
2. Download a file providing M (on the same peer where the file was uploaded).
3. Tag an uploaded file with a filename N that maps to M.
4. Execute a search query that will check remote peers about available files. The

search result will output available file names.
5. Resolve a file name to the unique file identifier.
6. Download remote files based on the resolved unique identifier.

1 Note that we sometimes generalize the term “file sharing” to “data sharing”. In fact the
implementation is not required to work with files, but uses an abstraction representing data. This is
convenient since we can work purely in-memory if needed, which is convenient for testing, or with
actual files for a realistic use case.

1

Figure 1: End-result of HW2. The peer is able to upload a file, download a file, perform a
search, and tag a file.

2

Objectives
Implement a new set of functionalities in your peerster related to file/data sharing.

File sharing
Peerster nodes will be able to send and receive potentially large files, not just short text
messages. Note that it is already possible (in Homework 1 Peerster) to send large files.
Indeed, network layer 2 (Ethernet) would split the packet in datagrams of size MTU
(maximum transmission unit), and would reassemble them back at the destination. But,
because Peerster uses UDP for inter-node communication, which does not have
congestion/flow control, by sending large packets we could flood the network. Moreover, if
one part of a large UDP message is lost, the entire message is lost. Thus, peers need to
implement their own basic flow control. We’ll have peers break up files into chunks for
transfer to avoid flooding the network. To keep track of file chunks, peers use hash trees (as
many P2P systems do), which identify both complete files and parts of files.

The peer indexes each file it shares as follows:

1. It divides the file into chunks and stores each chunk in a Key/Value store using the
hex-encoded chunk’s hash as the key, and the chunk’s content as the value.

2. It creates a MetaFile, which is a file containing the hashes of each chunk and stores
it using the hex-encoded MetaFile’s hash as the key, and MetaFile content as the
value.

Chunks
The chunk size is provided in the configuration. Note that it is very unlikely that the file will
be an exact multiple of the chunk size, thus the last chunk may be smaller. This is fine and
you must not pad the last file’s chunk.

As a simplification, Peerster should only allow sharing files whose MetaFile fits in one
chunk. In other words, there’s no need to chunk the MetaFile and recursively hash those
chunks.

MetaFile and MetaHash
To build up the MetaFile corresponding to a shared file, simply join the 32-byte SHA-256
hash of each chunk with the MetafileSep provided. Listing 1 illustrates how a Metafile is
computed.

F(x) = Hex_encode(SHA_256(x))
Sep = MetafileSep
|| = concatenate
c_i = content of chunk i
N = total number of chunks

3

https://en.wikipedia.org/wiki/Merkle_tree

MetafileValue = F(c_0)||Sep||F(c_1)||Sep||...||F(c_N-2)||Sep||F(c_N-1)
MetafileKey =
F(SHA256(c_0)||SHA256(c_1)||...||SHA256(c_N-2)||SHA256(c_N-1)))

Listing 1: Pseudocode of the Metafile value and key computation. The Metafile value is to be
saved using its hex-encoded sha-256 hash content as the key.

As mentioned above, a MetaHash uniquely identifies a file. One consequence is that two
files with identical contents but different names have the same MetaHash. Thus, copying a
file under a different name, without changing the contents, and sharing it, should not result
in creating a different MetaFile. The copy can simply use the same chunks, MetaHash and
MetaFile as the original.

For simplicity, Peerster should only support sharing files that are 2 MiB or less.

Name and metahash
When a file is shared, it completely loses its notion of a “filename”. Its unique identifier is its
metahash, which is not convenient to remember and use. As such, Peers will maintain a
mapping between metahashes and names, also sometimes referred to as filename (you can
consider both name and filename as the same). This mapping will be kept in the naming
store. The naming store is a simple key/value store, where keys are names and values
metahashes.

Catalog
Each peer is going to maintain a catalog of metahashes and chunks. A catalog contains, for
each known metahash and chunks (referenced by their keys), a bag of peers’ addresses
that are known to have them. Note that the catalog itself does not make any difference
between a chunk and a metafile. It only has the notion of a “key” which simply says “the
value referenced by this key is known to be present on those peers, whether the key
represents a chunk or a metahash”. The catalog must only contain information about
remote peers, i.e a peer must not have entries about itself.

File Download
To allow a client to download a file, a peer needs to have it locally, or otherwise know a
remote peer that has it. Thanks to the catalog this information is at hand. A peer uses a
simple one-chunk-at-a-time request / response download protocol:

1. The peer first fetches the metafile from another peer based on its catalog, or locally
if it already has it.

2. The peer parses the metafile to extract each hex-encoded chuck hashes, and
sequentially retrieve chunks: either locally or from other peers based on the catalog.
Recall that a hex-encoded chunk hash is used as the key to reference that chunk
value.

4

3. The peer reconstructs the file with the chunks and returns it.

When the gossiper collects all the chunks for a given file, the gossiper reconstructs it and
also takes this opportunity to save the chunks and the metafile locally if some were fetched
from a remote peer. Therefore, the files downloaded are then locally available on the peer.

Details
The peer requesting the file first sends a data request to download the MetaFile, if it doesn’t
have it locally. The node waits for a reply to that request, retransmitting the request
periodically if it does not receive a reply. Specifically, the node implements an exponential
back-off mechanism with parameters {I, F, R}: there are at most R retransmissions, each
at an interval that starts at the initial timeout I that is multiplied by a factor F after each
iteration.
This means, the node retransmits after I seconds from the initial transmission if it does not
receive a reply, then again after I*F seconds, then I*F^2, etc.... Then the node sends a
request for each of the file's data chunks in turn (if it does not have the chunk locally),
retransmitting the chunk request periodically just like above. For the sake of simplicity, we
ask you to download chunks of a file one by one, i.e. when your gossiper sends a request
for a chunk, it should wait for the reply before sending the next request. In the real world,
several chunks can be downloaded in parallel, however, for the purposes of this homework,
the sequential approach must be used.

When a peer receives a request for a MetaFile or a chunk that the peer does not have, the
peer responds with an empty value.

Name search “all”
Peers must support regex-based search for available filenames. The search should allow
one to discover names on multiple, if not all, peers on the network. The perimeter of the
search is limited by a budget, representing the maximum number of peers the search would
ask. It works as follow:

1. When a peer searches for a file, it divides the provided budget as evenly as possible
among its neighbours and sends a search request to each of them according to the
budget.

2. The peer P that receives a search request first processes the request locally,
searching among the shared files for any file names matching any of the search
keywords, and sending a search reply if any files match.

3. Then, P subtracts 1 from the incoming request's budget. Only if the budget B is still
greater than zero, P sends the request up to B of its neighbors, excluding the node
that P has just received the request from. If P has more than B neighbors, P
forwards the request to randomly chosen B neighbors. If P has fewer than B
neighbors, it divides the remaining budget B as evenly as possible (i.e.,
plus-or-minus 1) among the recipient nodes of this search request.

5

For example, if an incoming search request has a budget of 3 and the receiving node has 5
neighbors, the node first processes the request locally, subtracts 1 for itself, then forwards
the request to 2 other randomly-chosen neighbors, giving each forwarded request a budget
of 1. Alternatively, if the incoming request's budget is 10, the node first subtracts 1, then
forwards the request to all 5 neighbors, such that 4 forwarded requests have a budget of 2
and the remaining one has a budget of 1.

Name search “first”
Peers need to search for files that can be entirely fetched from a single peer, with no
missing chunks. This is what we call a “full match”. In order to not flood the network in
search of a “full match”, peers use a simple expanding-ring search scheme with2

parameters {B, F, R, T}. This kind of search is using the same type of message as the
previous search, with this time a retry mechanism that increases the budget.

The peer should start with an initial search query budget of B and retry a maximum of R
times. A retry is performed if after the timeout T no answer is received with a full match.
After each try the budget is multiplied by a factor F. The process ends when the peer tried R
times with no full match response.

Search duplicates
Peers need to detect if they receive a duplicate search request and ignore it. Each request
contains a unique identifier that allows peers to identify them.

2 As you have seen in the lecture “Flooding search and routing”.

6

Your tasks
In the following tasks you are progressively going to implement the data sharing part,
followed by the download part, and finally the searching part.

In summary, here is what needs to be done:

0: Think about asynchronous notification
1: Implement the Upload function
2: Implement the catalog-related functions
3: Implement the Download function and process DataReplyMessage
4: Process DataRequestMessage
5: Implement the Tag and Resolve function
6: Implement the SearchAll function and process SearchReplyMessage
7: Process SearchRequestMessage
8: Implement the SearchFirst function

Before you begin: New messages introduced
Before going into the technical details, here we introduce you to the new types of message
Peerster is going to use. Those messages are defined in types/datasharing_def.

DataRequestMessage
This message is used by a peer to request a metafile or chunk on a remote peer. It contains
a unique RequestID, and a Key. To get a unique request ID you must use the same function
as the one used to generate the PacketID: xid.New().String(). The Key attribute
corresponds either to a metahash or a chunk hash.

DataReplyMessage
This message is sent back by a peer in response to a DataRequestMessage. It contains a
RequestID that corresponds to the RequestID from the DataRequestMessage, and a
Key/Value pair. Value can be nil in case the responding peer does not have data associated
with the key, otherwise it is set to the value the peer has from the corresponding key. Key is
the same as the one from the DataRequestMessage.

SearchRequestMessage
This message is used by a peer to look for matching filenames on other peers. As for the
DataRequestMessage, it contains a unique RequestID that must be generated with
xid.New().String().

7

SearchReplyMessage
This message is sent back by a peer in response to a SearchRequestMessage. It contains
the associated RequestID and a list of FileInfo that describes a matching filename.

Before you begin: Introduction to the storage interface
You will find a new package storage in your skeleton. The storage package contains a
Storage abstraction. This abstraction is provided to the peer in the configuration and allows
you to retrieve two stores: a DataBlobStore, to handle the chunks/metafiles, and a
NamingStore, to handle the mapping between filenames and metahashes. A Store is an
interface that provides basic data manipulation functionalities expected from a key/value
store.

When your peer needs to save a chunk or metafiles, it must use the DataBlobStore. For
example:

blobStore := conf.Storage.GetDataBlobStore()
blobStore.Set(“metahash”, []byte(“chunk”))

Your peer can directly use the store for its live operations, without any sort of intermediate
structure. Functions provided by the store are thread-safe.

There are two Store implementations: inMemory and file. As the names suggest, the fist one
saves everything in memory while the later one uses files. In the unit tests we use the
inMemory implementation, and the web GUI will also use by default inMemory. You can
however use the file storage by providing to the CLI a --storagefolder argument. This is a
nice way to look at what is being stored, as each key/val pair will be saved as a file in the
provided folder. Also, it ensures that a peer doesn’t lose its state between reloads.

Task 0: Think about asynchronous notification
In this homework you will have to deal with asynchronous notification, which resembles the
acknowledgement mechanism from HW1. If you couldn’t come up with a satisfying
solution, now is a great occasion to think about that, as this homework will require you to
implement more of this pattern.

The problem can be stated as follows: Process P1 sends a query and needs to wait
(blocking) for a reply to that query. The reply later comes from process P2, which needs to
notify P1 of the reply. The query and reply have in common the same unique identifier. In
code:

8

func SendQuery() {
Send query Q
◼ Wait for reply RQ

}

func ProcessReply() {
Receive Rq
=> How to notify ◼ ?

}

Listing 1: Illustration with pseudo-code of the asynchronous notification problem

Practically, this is what you will need to do for a data request: peer A will send a data
request to peer B, and peer A will need to wait for the reply from peer B, which will happen
when peer B will process the data reply.

Take some time to think about how to solve this problem. Recall that in your peer
implementation you can create as many files and packages as you want.

Task 1: Implement the Upload function
The Upload function must create and store in the BlobStore the chunks and metafile. As
described in the introduction, split the file into chunks and store each chunk using the
hex-encoded chunk’s hash as the key. Then save the metafile, which contains all the
chunks hashes separated by the MetafileSep defined in peer/datasharing.go. Use the
hex-encoded hash of the metafile as its key and store it too on the BlobStore.

To compute a sha-256 hash use the standard crypto module of go. To hex-encode/decode
use the standard encoding/hex module. Listing 2 provides a simple example.

h := crypto.SHA256.New()
h.write(metafile)
metahashSlice := h.Sum(nil)
metahashHex := hex.EncodeToString(metahashSlice)

Listing 2: Code example using the crypto and encoding/hex library.

Task 2: Implement the catalog-related functions
Your peer must maintain a catalog that defines where metahashes and chunks can be
found in Peerster. The catalog definition and explanations are defined in
peer/datasharing.go. The catalog is purely local to the peer and doesn’t make use of any
store. Implement the UpdateCatalog and GetCatalog functions. Those two simple
functions set an entry in the catalog and return the catalog, respectively.

9

https://pkg.go.dev/crypto
https://pkg.go.dev/encoding/hex

Task 3: Implement the Download function and process
DataReplyMessage
The Download function must sequentially get the metafile and, based on the metafile
content, the chunks. For each of those, the peer must first check if it has the element in its
local blob storage. If not, it must select a random peer from the catalog and send it a
DataRequestMessage, using the routing table to get the next-hop if any.
Note that if the peer doesn’t have the element locally and there isn’t any entry for the
element in its catalog, then the peer must return an error since there is no way to get the
element.

Upon sending the DataRequestMessage to the random neighbor, the peer must wait for the
corresponding DataReplyMessage (this is the asynchronous notification problem) and use a
backoff strategy in case it doesn’t receive the reply back in time. The backoff parameters
are given in the configuration. Note that the peer always tries to send the
DataRequestMessage to the same random neighbor. In case the remote peer responds with
an empty value , or the backoff timeouts, the function must return an error.3

You need to implement the processing of DataReplyMessage to do the notification needed
when fetching an element from the Download function. This operation is asynchronous and
you can use the RequestID to implement some sort of notification. For example, when the
Download function sends a data request, it could set up a channel identified by RequestID
that will be filled when a reply is received with the same RequestID.

For each element fetched from a remote peer, the peer must store that element on its local
blob storage so that it will be available for sharing.

Task 4: Process DataRequestMessage
Upon receiving a DataRequestMessage, the peer must respond with a DataReplyMessage.
This message must have the same RequestID and Key as the incoming
DataRequestMessage. The Value must come from the peer’s blob store. It can be nil if the
peer doesn’t have the value.

The message must be sent back using the routing table.

Task 5: Implement the Tag and Resolve function
The Tag function uses the naming store to create a mapping between a name (sometimes
referenced as filename) and a metahash. The Resolve function resolves a name to a
metahash. The naming store must contain names as keys and metahashes as values.

3 If the remote peer doesn’t have the element it means the catalog contains an erroneous element. It
should not happen, but if it does for any sort of reason it would be a good idea to update the catalog
to remove that erroneous entry.

10

Task 6: Implement the SearchAll function and process
SearchReplyMessage
The SearchAll function returns a list of all matching filenames from the peer’s local naming
store and from neighbours. To get filenames from neighbours the function must send a
SearchRequestMessage to as many neighbours as possible based on the budget. The
budget limits the propagation of the SearchRequestMessage on the network. It must be
divided as evenly as possible among neighbours and randomly allocate budget splitings to
its neighbours. For example, if the budget is 10 and the peer has 3 neighbours, then the
peer will send a SearchRequestMessage with a budget of 4 to a random neighbor, and 3 to
the other two. Note that there is no retry mechanism. If the budget is lower than the number
of neighbors, then only a random subset of neighbors will receive a
SearchRequestMessage with a budget of 1.

The function must wait the provided timeout before gathering the filenames from all the
SearchReplyMessage responses, merged with the peer’s local naming store, and returning
them (this is again the asynchronous notification problem).

Each SearchRequestMessage must be provided with a unique RequestID, which will be the
same in each responding SearchReplyMessage. This is how the link between a reply and a
request can be done, as multiple instances of a SearchRequest can occur simultaneously in
your peer.

Finally, implement the processing of a SearchReplyMessage. There are two elements to
implement:

1. Update the naming store and the catalog based on the message content.
2. Notify your peer that a search reply message has been received, based on how you

solved the asynchronous notification problem.

Task 7: Process SearchRequestMessage
Upon receiving a SearchRequestMessage, a peer must:

1. Forward the search if the budget permits. The forwarded search requests must be
sent with a budget evenly distributed among shuffled neighbors. The forwarded
request must have all the same attributes of the original request except the budget.
The packet’s header Origin and RelayedBy must be set to the peer’s socket
address.

2. Check its naming store for any matching name and then construct a
types.FilesInfo{} for each file mapped by a matching name. Include a matching
name only if the peer has the corresponding metafile in its blob store.

3. Return a SearchReplyMessage containing the same RequestID as the request and
all the files info. The reply must be directly sent to the packet’s source (it can be the

11

peer that originated the search request, or a peer that forwarded a search request)
without using the routing table. The Destination field of the packet’s header must be
set to the searchMessage.Origin. If the peer doesn’t have any match, it must reply
indicating no matches (i.e., an empty slice of responses).

Task 8: Implement the SearchFirst function
When a peer has all chunks of a file, we say that this peer “fully knows” the file. The
SearchFirst function must return the first matching filename of a fully known file, either
locally or by a remote peer. The function must first check if it locally fully knows a filename
that matches. For that you will need to resolve the name to a metahash, parse the
corresponding metafile, and check if the peer has all chunks. If not, it must use the
expanding-ring search to look for a remote peer that fully knows a matching filename. The
expanding-ring search’s parameters are provided as an input to the function. As for the
SearchAll function, the peer must send a SearchRequestMessage, this time with a budget
that increases based on the expanding-ring search’s parameter. Remote peers won’t make
a difference if the search request is for a SearchAll or SearchFirst query. They will simply
answer with what they know based on their name store and blob store. It is the
responsibility of the initiator to check the search replies and see if one of the replies
contains a file that has a total match.

Try your program
As in HW2 and apart from the unit tests and integration tests, you can use the web GUI to
try your program. A new set of arguments has been added to the CLI. Use the -h flag to see
them.

12

Appendix A - Tests definitions
Note to authors: Do not directly modify the test definitions without updating the implementation. Leave a comment if needed.

Upload

Pre-condition Action Expectation

(2-1)
P1 with a configuration that has a chunk size
of 3.
P1 is not started (Start function not called)

Call the Upload function on P1 with a file
that is 7 bytes long.

P1 returns the correct metahash and no
error.
The blob store of P1 must contain the
correct metafile and 3 chunks (two chunks of
size 3, one chunk of size 1).

(2-2)
P1 with a configuration that has a chunk size
of 3.
P1 is not started (Start function not called)

Call the Upload function on P1 with a file
that is 6 bytes long.

P1 returns the correct metahash and no
error.
The blob store of P1 must contain the
correct metafile and 2 chunks.

Catalog

Pre-condition Action Expectation

(2-3)
P1, not started Call GetCatalog on P1 Returns an empty catalog

13

Call UpdateCatalog on P1 with key K and
value V

Call GetCatalog on P1 Returns a catalog with K and V and length 1

Download

Pre-condition Action Expectation

(2-4)
P1, not started Call Download on P1 with an unexisting

metahash for P1
Returns an error

(2-5)
P1, not started.
The blob storage of P1 has a file with
metahash M and chunks CS.

Call Download on P1 with metahash M Returns a file composed of chunks CS.

(2-6)
P1, with no files and no neighbors.
P2, with file F associated with the metahash
M.
P1 has its catalog telling that P2 has F.

Call Download on P1 with metahash M. Returns an error, because P1 doesn’t have
P2 in its routing table.

(2-7)
P1, with P2 as neighbor.
P2, with file F associated with the metahash
M.
P1 has its catalog telling that P2 has F.

Call Download on P1 with metahash M. Returns an error, because P2 doesn’t have
P1 in its routing table.

(2-8)
With the following topology: Call Download on P1 with metahash M. Returns F.

14

P1 ↔ P2
P1 has its catalog telling that P2 has F.
P2 has a file F with associated metahash M
and composed of 2 chunks.

P1 sequentially sent 3 data requests: one for
the metafile, and one for each of the 2
chunks.
P1 received 3 data replies corresponding to
the data request it sent.
P2 received 3 data requests from P1.
P2 sent 3 data requests to P1.

(2-9)
With the following topology:
P1 ↔ P2
File F with metahash M and chunks C1, C2
P1 has the metafile of F and chunks C1
P1’s catalog is telling that P2 has chunks C1,
C2

Call Download on P1 with metahash M. Returns F.
P1 sent 1 data request for C2.
P2 sent 1 data reply with C2.

(2-10)
With the following topology:
P1 ↔ P2 ↔ P3
File F with metahash M and chunks C1, C2.
P1 has the metafile of F and chunks C1
P1’s catalog is telling that P3 has chunks C1,
C2

Call Download on P1 with metahash M. Returns F.
P1 sent 1 data request for C2.
P3 sent 1 reply for C2.

Naming

Pre-condition Action Expectation

(2-11)
P1, not started
P1’s naming store is empty

Call Tag on P1 with name N and metahash
M.

P1’s naming store is equal to {N: M}

15

(2-12)
P1, not started
P1’s naming store is equal to {N: M}
(N=name, M=metahash)

Call Resolve on P1 with name N Return M.

(2-13)
P1, not started Call multiple times Tag on P1 with names Ni

and metahashes Mi

Call multiple times Resolve on P1 with all the
names Ni set previously

Returns the corresponding metahashes Mi
corresponding to the names Ni

The Catalog is empty

SearchAll

Pre-condition Action Expectation

(2-14)
P1, not started Call SearchAll with pattern `.*` on P1 Returns an empty result

(2-15)
P1, not started.
P1’s name store has a filename N
corresponding to metahash M.

Call SearchAll with pattern `.*` on P1 Returns filename N

The catalog is empty

(2-16)
The following topology:
P1 ↔ P2
P2 has an entry in its name store {N:M} but
doesn’t have in its blob storage an entry for

Call SearchAll with pattern `.*` on P1 Returns an empty result, because P2 doesn’t
have the metafile associated to M.

16

M (i.e. it doesn’t possess the file associated
to M)

(2-17)
The following topology:
P1 ↔ P2

P2 has an multiple entries in its name store:
{nameA: mh1, nameB: mh2, nameC: mh3,

nameD: mh4, nameE: mh5}

P2 has all the metafiles mh{1-5}. Each
metafile defines 2 chunks. P2 only has the
first chunk.

Call SearchAll with pattern `[name[A-D]]` on
P1

P2 sends a reply with 4 responses. Each
response says that the file has two chunks
but P2 only has the first one.

P1’s catalog is updated to mention that P2
has mh{1-4} and the chunk.

P1’s name store is updated with name{A-D}
mapping to mh{1-4}

(2-18)
The following topology:
P1 ↔ P2 ↔ P3 ↔ P4

P1 has {filenameA: mhA} in its name store

P2 has {finenameB: mhB} in its name store
P2 has {mhB: c1B} in its blob store

P3 has {filenameC: mhC} in its name store
P3 has {mhC: c1C, c1C: X} in its blob store
P3 has {filenameB: mhB} in its name store
P3 has {mhB: c1B} in its blob store

P4 has {filenameD: mhD} in its name store
P4 has {mhD: c1D} in its blob store

Call SearchAll on P1 with a limited budget of
2 and a pattern `.*`

Returns [filenameA, filenameB, filenameC]

P4 do not receive any message (not enough
budget)

P1’s catalog is updated as follow:
{mhB: {P2:{}, P3:{}}, mhC: {P3:{}}, c1C:

{P3:{}}}

P1’s name store is updated as follow:
{mhA: filenameA, mhB: filenameB, mhC:

filenameC}

17

(2-19)
The following topology:
P1 ↔ P2
↔ P3 ↔ P4

↔ P5

P1 has {filenameA: mhA} in its name store

P2 has {finenameB: mhB} in its name store
P2 has {mhB: c1B} in its blob store

P3 has {filenameC: mhC} in its name store
P3 has {mhC: c1C, c1C: X} in its blob store

P4 has {filenameD: mhD} in its name store
P4 has {mhD: c1D} in its blob store

P5 has {filenameE: mhE} in its name store
P5 has {mhE: c1E} in its blob store

Call SearchAll on P1 with a limited budget of
4 and a pattern `.*`

Returns [filenameA, filenameB, filenameC,
filenameD OR filenameE]

Since the budget is limited, only one of P4 or
P5 should have received a search request.

P1’s catalog store is updated follow:
{mhB: {P2}, mhC: {P3}, mhD: {P4} OR mhE:

{P5}}

P1’s catalog is updated as follow:
{filenameA: mhA, filenameB: mhB,

filenameC: mhC, filenameD: mhD OR
filenameE: mhE}

SearchFirst

Pre-condition Action Expectation

(2-20)
P1, not started Call SearchFirst with pattern `.*` on P1 Returns an empty result

(2-21)
The following topology:
P1 ↔ P2

Call SearchFirst with pattern `.*` on P1 and
an expanding-ring configuration with
initial=1, factor=3, retry=2

Returns an empty result

18

P1 sent 2 search requests. The first one with
a budget of 1, the second with a budget of
3.

P2 sent 2 search replies.

P1’s catalog is empty

P1’s name store is empty

(2-22)
The following topology:
P1 ↔ P2

P1 fully knows a file F with an associated
name N

Call SearchFirst on P1 with pattern `.*` Return N.
P1 don’t send any search request
P1’s catalog is empty
P1’s name store is not updated

(2-23)
The following topology:
P1 ↔ P2

P1 has {filenameA: mhA} in its name store
P2 has {mhA: c1a} in its blob store

P2 has {finenameB: mhB} in its name store
P2 has {mhB: c1b} in its blob store

Call SearchFirst on P1 with pattern `.*` and a
retry=2

Returns an empty result (P1 and P2 do not
fully know any file)

P1 sent two search requests

P1’s catalog is updated as follow:
{mhB: {P2}}

P1’s name store is updated as follow:
{filenameA: mhA, filenameB: mhB}

(2-24)
The following topology:
P1 ↔ P2

Call SearchFirst on P1 with pattern `.* and a
retry=2`

Returns filenameB
P1 sent 1 search request

19

P1 has {filenameA: mhA} in its name store
P2 has {mhA: c1a} in its blob store

P2 has {finenameB: mhB} in its name store
P2 has {mhB: c1b, c1b: X} in its blob store

P1’s catalog is updated as follow:
{mhB: {P2}, c1b: {P2}}

P1’s name store is updated as follow:
{filenameA: mhA, filenameB: mhB}

(2-25)
The following topology:
P1 ↔ P2 ↔ P3

P1 has {filenameA: mhA} in its name store
P2 has {mhA: c1a} in its blob store

P2 has {finenameB: mhB} in its name store
P2 has {mhB: c1b<sep>c2b} in its blob store
P2 has {c2b: x} in its blob store

P2 has {finenameC: mhC} in its name store
P2 has {mhC: c1c<sep>c2c} in its blob store
P2 has {c2c: x} in its blob store

P3 has {filenameC: mhC} in its name store
P3 has {mhC: c1c<sep>c2c} in its blob store
P3 has {c1c: x, c2c: x} in its blob store

P3 has {filenameB: mhB} in its name store
P3 has {mhB: c1b<sep>c2b} in its blob store
P3 has {c1b: x} in its blob store

Call SearchAll on P1 with pattern `.*`,
initial=1, factor=2, retry=2

Returns filenameC

P1 sent 2 search request

P2 sent 4 packets (2 replies, 1 forward, 1
relay)

P3 sent one reply

P1’s catalog is updated as follow:
{mhB: {P2, P3}, c1b: {P3}, c2b: {P2}, mhC:

{P2, P3}, c1c: {P2, P3}, c2c: P3}

P1’s name store is updated as follow:
{filenameA: mhA, filenameB: mhB,

filenameC: mhC}

20

Scenario

Pre-condition Action Expectation

(2-26)
A “complex” topology with 4 peers P{1-4}

P1 -> P2
P2 -> P1
P2 -> P3
P3 -> P1
P3 -> P4
P4 -> P2

Call Upload with file Fb on P2. Fb has the
associated metahash Mb.

Call Download with Mb on P2

Call Tag with name Nb and metahash Mb on
P2

Call SearchAll on P1 with a budget of 3 and
pattern `.*`

Call Download with Mb on P1

Call SearchAll on P3 with a budget of 3 and
pattern `Nb`

Call Download with Mb on P3

Call Upload with file Fd on P4. Fd hash the
metahash Md.

Call Tag with name Nd and metahash Md on
P4

Returns the metahash Mb

Returns the file Fb

Returns Nb
P1’s name store is updated as follow:
{Nb: Mb}

Returns the file Fb

Returns Mb
P3’s name store is updated as follow:
{Nb: Mb}

Returns the file Fb

Returns the metahash Md

21

Call SearchFirst on P1 with initial=1,
factor=2, retry=5

Call Resolve on P1 with Nd

Call Download on P1 with Md

Add two peers P5 and P6. P6 knows P5 and
P5 knows P3. P5 and P6 annonce
themselves to the others (heartbeat).

Call SearchAll on P6 with pattern `.*` and a
budget of 8.

Call SearchFirst on P6 with initial=1,
factor=2, retry=4

Returns Nd

Returns Md

Returns file Fd

Returns Nb and Nd

Returns Nb

Integration test
The integration test is the same as the scenario test, except it uses a reference peer in P2, P3, and P6

22

