Exercise 6.1. Consider the *n*-torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ and let $\pi : \mathbb{R}^n \to \mathbb{T}^n$ be the projection map.

- (a) Give \mathbb{T}^n a natural smooth structure so that π is a local diffeomorphism.
- (b) Show that a map $f : \mathbb{T}^n \to M$ (where M is a smooth manifold) is smooth if and only if the composite $f \circ \pi$ is smooth.
- (c) Show that \mathbb{T}^n is diffeomorphic to the product of *n* copies of the circle \mathbb{S}^1 .

Exercise 6.2. If S is an embedded submanifold of M, show that there is a unique topology and smooth structure on S such that the inclusion map $S \to M$ is an embedding.

Exercise 6.3. For a subset S of a smooth manifold M, show that the following are equivalent:

- (a) S is a closed embedded k-submanifold of M.
- (b) For each point $p \in M$ there exists a chart (V, φ) that is k-sliced by S, i.e. we have

$$S \cap V = \{q \in V : \phi^k(q) = \dots = \phi^{n-1}(q) = 0\}.$$

Exercise 6.4. Show that every submersion is an open map.

Exercise 6.5. If M is a smooth manifold and $\pi : N \to M$ is a covering map, show that N has a unique smooth structure such that π is a local diffeomorphism.

Exercise 6.6. Let $\iota : N \to M$ be a smooth embedding of smooth manifolds.

- (a) If ι is a closed map, show that for every smooth function $f \in C^{\infty}(N)$ there exists a smooth function $g \in \mathcal{C}^{\infty}(M)$ such that $f = g \circ \iota$.
- (b) Is this still true if we omit the assumption that ι is a closed map ?

Exercise 6.7 (To hand in). (a) Show that the map $f : \mathbb{P}^2 \to \mathbb{R}^3$ defined by

$$f([x, y, z]) = \frac{1}{x^2 + y^2 + z^2} (yz, xz, xy).$$

is smooth, and has injective differential except at 6 points.

(b) Show that the map $g: \mathbb{P}^2 \to \mathbb{R}^4$ defined by

$$g([x, y, z]) = \frac{1}{x^2 + y^2 + z^2} (yz, xz, xy, x^2 - z^2)$$

is a smooth embedding.

Exercise 6.8. *

- (a) A smooth map $f: M \to N$ is **transverse** to a closed embedded submanifold $S \subseteq N$ if for all points $p \in f^{-1}(S)$ we have $T_{f(p)}S + \text{Img}(T_p f) = T_{f(p)}M$. If this happens, show that $f^{-1}(S)$ is a closed embedded submanifold of M. What is its dimension? What is its tangent space?
- (b) Two smooth maps $f_0 : M_0 \to N$ and $f_1 : M_1 \to N$ are **transverse** to each other if for any pair of points $p_0 \in M_0$, $p_1 \in M_1$ such that $f_0(p_0) = f_1(p_1) =:$ $q \in N$ we have $\text{Img}(T_{p_0}f_0) + \text{Img}(T_{p_1}f_1) = T_qN$. If this happens, prove that the set

$$S := \{ (p_0, p_1) \in M_0 \times M_1 \mid f_0(p_0) = f_1(p_1) \}$$

is a closed submanifold of $M_0 \times M_1$. What is its dimension ?