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Astrophysics III: Stellar and galactic dynamics

Solutions

Problem 1:

The ellipse equation is given by
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We apply a coordinate transformation now: Let z = 2’ 4+ ae (= 2’ + ¢). This gives
y'=(1-¢") (o — (2' +ae)?) (2)

Now we show that the equation of Keplerian orbits (3) can be written in the same
form as (2). The Keplerian orbits are defined as
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with 2’ = rcos(p), y = rsin(yp)
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which is exactly equation (2) again.
Problem 2:

First law : The orbit of a planet is an ellipse with the Sun at one of the two
foci. This was shown in question 1.

Second law : A line segment joining a planet and the Sun sweeps out equal
areas during equal intervals of time. Consider the Sun to be at the centre of the
coordinate system and a planet at the position Z(t) with a velocity ¢(t). Consider first
the areas sweeps out during an infinitesimal time dt¢. This area will be:

0A = o [2(t) x dz(t)], (4)
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where dZ = vdt. So,
1 1. -
0A = 3 dt|Z(t) x v(t)| = 3 dt|L|, (5)
with E, the angular momentum (consider a body of unit mass). As the latter is

conserved in a spherical potential, A is independent of the time and of the position
along the orbit. We can thus write for any interval time AT such that AT =ty — #1:
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which demonstrates the law.

Third law : The square of a planet’s orbital period is proportional to the
cube of the length of the semi-major axis of its orbit. From the previous law,
we got a result of the form

A= %LAT,



with L the magnitude of the angular momentum of a test particle of unit mass. For a
full orbit, AT =T is the period, and A is the area of the ellipse:

A =7ab = 7ma*V1 — €2,
Let us now turn our attention to L. There are different ways of calculating it, but we

will use the Vis-Viva equation:
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Let’s take , e.g., r = ryin:
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but 2a — Tmin 1S Tmax, and we also have 7minTmax = b°. Together we get:
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So we have

Thus the period is
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Throughout this exercise, we took a test particle of unit mass to make dealing with
the units easier. (Usually, L = mrv and not only L = rv which we used here.)



