Introduction to Differentiable Manifolds

EPFL - Fall 2022

F. Carocci, M. Cossarini

Solutions Series 4 - More on Tangent vectors and smooth embeddings 2021-10-27

Notes:

Local parametrizations. For some problems it is convenient to work with local parametrizations rather than charts. Recall that a **local parametrization** (or **inverse chart**) of a topological n-manifold M is a triple (V, U, ϕ) , where $V \subseteq \mathbb{R}^n$ and $U \subseteq M$ are open sets, and $\phi: V \to U$ is a homeomorphism. An **inverse atlas** on M is a set \mathcal{A} of local parametrizations of N whose images cover M. An inverse atlas \mathcal{A} is **smooth** if the **transition map** $\psi^{-1} \circ \phi$ between any two local parametrizations (V, U, ϕ) , $(V', U', \psi) \in \mathcal{A}$ is smooth. A smooth inverse atlas defines a smooth structure.

Notation for tangent vectors. In some solutions we will use the following notation for tangent vectors. Let p be a point of a smooth n-manifold M, let (V, U, φ) be a local parametrization of M such that $p \in U$, and let $\widetilde{p} = \phi^{-1}(p)$. Then for each vector $\widetilde{v} \in \mathbb{R}^n$, we denote

$$[\phi, \widetilde{v}]_p := D_{\widetilde{p}}\phi(D_{\widetilde{p}}\widetilde{v}) \in T_pM.$$

Warning: Be careful if you read the notes of last year: this tangent vector $[\varphi, \widetilde{v}]_p$ corresponds to the vector $[p, \phi^{-1}, \widetilde{v}]$ of the notes.

More explicitly, this tangent vector $[\phi, \widetilde{v}]_p \in T_pM$ is the derivation that maps each smooth function $h \in \mathcal{C}^{\infty}(M)$ to the number

$$\begin{split} [\phi, v]_p(h) &= (D_{\widetilde{p}}\phi(D_{\widetilde{p}}\widetilde{v}))(h) \\ &= (D_{\widetilde{p}}\widetilde{v})(h \circ \phi) \\ &= D_{\widetilde{p}}(h \circ \phi)(\widetilde{v}) \\ &= \left. \frac{\partial}{\partial t} \right|_{t=0} (h \circ \phi)(\widetilde{p} + t \, \widetilde{v}). \end{split}$$

Fixed the point $p \in M$ and the local parametrization ϕ , the map

$$\widehat{\phi}_p: \mathbb{R}^n \to T_p M$$
 $\widetilde{v} \mapsto [\phi, \widetilde{v}]_p$

is an isomorphism, since it is the composite of the isomorphism

$$\begin{array}{ccc} \mathbb{R}^n & \to & T_{\widetilde{p}} \mathbb{R}^n \\ \widetilde{v} & \mapsto & D_{\widetilde{p}} v \end{array}$$

(seen in Lecture 3) with the isomorphism $D_{\tilde{p}}\phi:T_{\tilde{p}}\mathbb{R}^n\to T_pM$ (whose inverse is $D_a\phi^{-1}$). In conclusion, each tangent vector $v\in T_pM$ can be written in the form $v=[\varphi,v]_p$ for some unique vector $v\in\mathbb{R}^n$.

Differential of a map. The differential of a smooth map $f: M \to N$ at a point p can be expressed by the formula

$$D_p f([\phi, \widetilde{v}]_p) = [\psi, D_p(\psi^{-1} \circ f \circ \varphi)(\widetilde{v})]_{f(p)},$$

where

 ϕ is a local parametrization of M that covers the point p and ψ is a local parametrization of N that covers the point f(p).

Change of parametrizations. In particular, putting $f = \mathrm{id}_M$, we see that if both ϕ and ψ are parametrizations of M that cover the same point $p \in M$, then

$$[\varphi, \widetilde{v}]_p = [\psi, \widetilde{w}]_p$$
 if and only if $\widetilde{w} = D_{\widetilde{p}}(\psi^{-1} \circ \phi)(\widetilde{v}),$

where $\widetilde{p} = \phi^{-1}(p)$.

Tangent spaces and Tangent bundles.

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let φ and ψ be smooth charts on a smooth manifold M defined on the same domain U. Let (x^1, \ldots, x^n) be the coordinates induced by φ and (z^1, \ldots, z^n) the coordinates induced by ψ . If the first coordinate functions x^1 and z^1 agree $(x^1 = z^1 \text{ on } U)$, this does *not* imply $\frac{\partial}{\partial x^1}|_p = \frac{\partial}{\partial z^1}|_p$ for $p \in U$.

Work out a simple example of this fact e.g. on $M = \mathbb{R}^2$ by considering on the one hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given by u = x, v = x + y.

This shows that $\frac{\partial}{\partial x^i}\Big|_p$ depends on the whole system (x^1,\ldots,x^n) , not only on x^i .

Solution. The two coordinate charts are related by

$$\begin{cases} u = x \\ v = x + y \end{cases} \qquad \begin{cases} x = u \\ y = v - u. \end{cases}$$

By the chain rule we have

$$\frac{\partial}{\partial u} = \frac{\partial x}{\partial u} \cdot \frac{\partial}{\partial x} + \frac{\partial y}{\partial u} \cdot \frac{\partial}{\partial y} = \frac{\partial}{\partial x} - \frac{\partial}{\partial y}.$$

We consider for example the function f(x,y) = xy on \mathbb{R}^2 . The coordinate derivatives of f with respect to two different charts are

$$\frac{\partial}{\partial x}f = y$$
$$\frac{\partial}{\partial u}f = y - x \neq \frac{\partial}{\partial x}f$$

Thus the coordinate vectors depends on the whole system.

We consider for example a linear function f(x,y) = ax + by on \mathbb{R}^2 . The coordinate derivatives of f with respect to two different charts are

$$\frac{\partial}{\partial x}f = a$$
$$\frac{\partial}{\partial y}f = a - b \neq \frac{\partial}{\partial x}f$$

Thus the coordinate vectors depends on the whole system.

Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional vector space, endowed with the natural smooth structure given by picking an isomorphism $\mathbb{R}^n \to V$ (via the Smooth Charts Lemma)

(a) Fix $p \in V$. To every $v \in V$ we associate the curve passing through p

$$\gamma_v : \mathbb{R} \to V : t \mapsto p + t v$$

Show that the map $\Phi_p: V \to T_pV: v \mapsto \gamma_v'(0)$ is an isomorphism of vector spaces.

Solution. To prove that the map $\Phi_p: V \to T_p V$ is an isomorphism, we fix a linear isomorphism $\phi: \mathbb{R}^n \to V$ and use it as a local parametrization of V. Our plan is to take profit from the fact that the linear map

$$\begin{array}{ccc} \mathbb{R}^n & \to & T_p V \\ \widetilde{v} & \mapsto & [\phi, \widetilde{v}]_p \end{array}$$

is an isomorphism. For any vector $v \in V$, the tangent vector $\Phi_p(v) \in T_pV$ is the derivation that maps each smooth function $h \in \mathcal{C}^{\infty}(V)$ to the number

$$\begin{split} \Phi_p(v)(h) &= \gamma_v'(0)(h) \\ &= \left. \frac{\partial}{\partial t} \right|_{t=0} h(\gamma_v(t)) \\ &= \left. \frac{\partial}{\partial t} \right|_{t=0} h(p+tv) \\ &= \left. \frac{\partial}{\partial t} \right|_{t=0} h(\phi(\widetilde{p}+t\phi(\widetilde{v})) \quad \text{setting } \widetilde{p} = \phi^{-1}(p) \text{ and } \widetilde{v} := \phi^{-1}(v) \\ &= \left. \frac{\partial}{\partial t} \right|_{t=0} (h \circ \phi)(\widetilde{p}+t\,\widetilde{v}) \quad \text{since } \phi \text{ is linear} \\ &= D_{\widetilde{p}}\widetilde{v}(h \circ \phi) \\ &= (D_{\widetilde{p}}\phi(D_{\widetilde{p}}\widetilde{v}))(h) \\ &= [\phi, \widetilde{v}]_p(h) \\ &= [\phi, \phi^{-1}(v)]_p(h) \end{split}$$

This computation shows that $\Phi_p(v) = [\phi, \phi^{-1}(v)]_p$ for any vector $v \in V$. This means that Φ_p is the composite of the isomorphisms ϕ^{-1} and $\widetilde{v} \mapsto [\phi, \widetilde{v}]_P$. We conclude that Φ_p is an isomorphism as well.

(b) Let $f: V \to W$ be a linear map between vector spaces V, W. Consider the differential $D_p f: T_p V \to T_{f(p)} W$ at any point $p \in V$. Identifying $T_p V \cong V$ and $T_{f(p)} W \cong W$ via the isomorphisms Φ_p , $\Phi_{f(p)}$, show that $D_p f$ is identified with f. That is, show that the following diagram commutes:

$$T_{p}V \xrightarrow{D_{p}f} T_{f(p)}W$$

$$\Phi_{p} \uparrow \qquad \uparrow \Phi_{f(p)}$$

$$V \xrightarrow{f} W$$

Solution. To check that the diagram commutes, we take two linear isomorphisms $\phi: \mathbb{R}^m \to V$ and $\psi: \mathbb{R}^m \to W$ and employ them as parametrizations. Let us show that for any vector $v \in V$ we have

$$[\phi, \phi^{-1}(v)]_p \longmapsto \begin{array}{c} D_p f \\ \downarrow \\ \downarrow \\ v \longmapsto \end{array} \begin{array}{c} [\psi, \psi^{-1}(f(v))]_{f(p)} \\ \downarrow \\ f(v) \end{array}$$

In the previous item we have shown that for any vector $\tilde{v} \in \mathbb{R}^n$ we have $\Phi_p(v) = [\phi, \phi^{-1}(v)] \in T_pV$, and in the same way we see that $\Phi_{f(p)}(f(v)) = [\psi, \psi^{-1}(f(v))] \in T_{f(p)}W$. To finish, we verify that

$$D_p f([\phi, \phi^{-1}(v)]_p) = [\psi, D_{\phi(p)}(\psi^{-1} f \phi)(\phi^{-1}(v))]_{f(p)}$$
$$= [\psi, (\psi^{-1} f \phi)(\phi^{-1}(v))]_{f(p)}$$
$$= [\psi, \psi^{-1}(f(v))]_{f(p)}.$$

Here, we used the fact that $D_{\phi(p)}(\psi^{-1} f \phi) = \psi^{-1} f \phi$ since the map $\psi^{-1} f \phi$: $\mathbb{R}^m \to \mathbb{R}^n$ is linear.

Exercise 4.3 (Differential of the determinant function). Consider the determinant function det : $M_n(\mathbb{R}) \to \mathbb{R}$, where $M_n(\mathbb{R}) \simeq \mathbb{R}^{n \times n}$ is the vector space of real $n \times n$

matrices, with its natural smooth structure. We want to compute its differential transformation D_A det at any matrix $A \in GL_n(\mathbb{R})$ (i.e. at any invertible matrix),

$$D_A \det : T_A M_n(\mathbb{R}) \to T_{\det(A)} \mathbb{R}$$

(Note that we may identify $T_A M_n(\mathbb{R})$ with $M_n(\mathbb{R})$ and $T_{\det(A)}\mathbb{R}$ with \mathbb{R} .)

(a) Verify that det is a smooth function.

Hint: Write the determinant as a sum over all *n*-permutations.

Solution. The determinant can be written as

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{0 \le i < n} a_{i,\sigma(i)}.$$

Each of the terms $f_{\sigma}(A) := \operatorname{sgn}(\sigma) \prod_{0 \leq i < n} a_{i,\sigma(i)}$ is a monomial, hence a smooth function.

(b) Show that the differential of det at the identity matrix $I \in M_n(\mathbb{R})$ is

$$D_I \det(B) = \operatorname{tr}(B).$$

where tr denotes the trace.

Solution. Let's define a curve $\gamma_B : \mathbb{R} \to GL(n) : t \to I + tB$, for $B \in GL(n)$. Using the identification $\Phi_I : GL(n) \to T_I(GL(n)) : B \to \gamma_B'(0)$ (and the usual identification $T_1\mathbb{R} \cong \mathbb{R}$) we have

$$D_I \det(B) = D_I \det(\gamma_B'(0))$$

$$= (\det \circ \gamma_B)'(0)$$

$$= \frac{d}{dt}\Big|_{t=0} (\det(I + tB))$$

$$= \sum_{\sigma \in S_D} \frac{d}{dt}\Big|_{t=0} f_{\sigma}(I + tB)$$

Let us derivate each of the monomials f_{σ} .

The coefficients of the matrix A = I + tB are $a_{i,j} = \delta_{i,j} + t \, b_{i,j}$, where $\delta_{i,j}$ is the Kronecker delta. Note that at t = 0 all the coefficients that are not on the diagonal vanish. If $\sigma \neq \mathrm{id}_n$, then the monomial f_{σ} has at least two coefficients that are not on the diagonal, hence we have $\frac{d}{dt}\Big|_{t=0} (f_{\sigma}(I+tB)) = 0$. Thus the only term which survives is the one corresponding to the permutation $\sigma = \mathrm{id}_n$, and we have

$$D_I \det(B) = \frac{d}{dt} \Big|_{t=0} f_{\mathrm{id}_n}(I + tB)$$

$$= \frac{d}{dt} \Big|_{t=0} \sum_{0 \le i < n} (1 + t b_{i,i,})$$

$$= \frac{d}{dt} \Big|_{t=0} (1 + t \operatorname{tr}(B) + t^2 \dots)$$

$$= \operatorname{tr}B$$

(c) Show that for arbitrary $A \in GL_n(\mathbb{R}), B \in M_n(\mathbb{R})$.

$$D_A \det(B) = (\det A) \operatorname{tr}(A^{-1}B)$$

Hint: Write $\det(A + tB) = (\det A)(\det(I + tA^{-1}B))$.

Solution. Similarly, we define $\gamma_B : \mathbb{R} \to GL(n) : t \to A + tB$, for $B \in GL(n)$. With the identification $\Phi_A : GL(n) \to T_A(GL(n)) : B \to \gamma'_B(0)$ we have

$$D_A \det(B) = D_A \det(\gamma_B'(0))$$

$$= (\det \circ \gamma_B)'(0)$$

$$= \frac{d}{dt}\Big|_{t=0} (\det(A + tB))$$

$$= \det(A) \lim_{t \to 0} \frac{1 + t \operatorname{tr}(A^{-1}B) + O(t^2)) - 1}{t}$$

$$= \det(A) \operatorname{tr}(A^{-1}B)$$

(d) Show that D_A det is the null linear transformation if A = 0 and $n \ge 2$. Solution. It suffices to check that $f'_B(t) = 0$ when t = 0 for the function

$$f_B(t) = \det(A + tB) = \det(tB) = t^n \det(B).$$

Now,
$$f'_B(t) = n t^{n-1} \det(B)$$
, thus $f'_B(0) = 0$ as required.

Exercise 4.4 (Tangent Bundles). (a) Show that $T_{(p_1,p_2)}M_1 \times M_2 \cong T_{p_1}M_1 \oplus T_{p_2}M_2$. Show that in fact this extends to the tangent bundles, i.e. there is a diffeomorphism $T(M_1 \times M_2) \cong TM_1 \times TM_2$.

Solution. Let us first recall how we define the smooth structure on a tangent bundle and the smooth structure of a product manifold. After that, we will combine these concepts to study the tangent bundle of a product manifold.

Smooth structure of a tangent bundle. The smooth structure on the tangent bundle TN of a smooth n-manifold N is defined by the local parametrizations of the form

$$\widehat{\phi}: V \times \mathbb{R}^n \to \pi_{TN}^{-1}(U)
(x,v) \mapsto (\phi(x), D_x \phi(D_x v)),$$

where (V, U, ϕ) is a local parametrization of N and $\pi_{TN} : TN \to N$ is the canonic projection $(p, w) \mapsto p$.

Smooth structure of a product manifold. The smooth structure on a product manifold $\prod_i M_i$ is defined by the local parametrizations of the form

$$\phi: \prod_{i} V_{i} \rightarrow \prod_{i} U_{i}$$

$$x = (x_{i})_{i} \mapsto p = (\phi_{i}(x_{i}))_{i},$$

where (V_i, U_i, ϕ_i) is a local parametrization of M_i for each i.

Tangent bundle of a product manifold. We consider the tangent bundle of a product manifold $M = \prod_{i \in I} M_i$. For each $i \in I$, we define the *i*-th component of a tangent vector $z \in T_pM$ as the vector $z_i = D_p\pi_i^M(v) \in T_{p_i}M_i$, where $\pi_i^M : M \to M_i$ the *i*-th projection $p = (p_j)_j \mapsto p_i$. We claim that for each point $p \in M$, the linear map

$$\begin{array}{cccc} f_p: & T_pM & \to & \prod_i T_{p_i}M_i \\ & z & \mapsto & (z_i)_{i\in I} = (D_p\pi_i^M(z))_{i\in I} \end{array}$$

is an isomorphism. Moreover, we claim that the map

$$f: TM \to \prod_i TM_i (p,z) \mapsto (p_i, D_p \pi_i^M(z))_{i \in I}$$

is a diffeomorphism.

Let us prove the second claim first. To do so, we examine a local expression of f constructed as follows. For each $i \in I$, take a local parametrization (V_i, U_i, ϕ_i) of M_i . From these we construct, as stated above, a local

parametrization $(\prod_i V_i, \prod_i U_i, \phi)$ of M, which is characterized by the commutative diagram

$$\prod_{j} V_{j} \xrightarrow{\phi} \prod_{j} U_{j}$$

$$\pi_{i}^{V} \downarrow \qquad \qquad \downarrow \pi_{i}^{U}$$

$$V_{i} \xrightarrow{\phi_{i}} U_{j}$$

where $\pi_i^U: \prod_j U_j \to U_i$ and $\pi_i^V: \prod_j V_j \to V_i$ are the *i*-th projections. From this parametrization of M we obtain the parametrization of TM

$$\widehat{\phi}: \prod_{i} V_{i} \times \prod_{i} \mathbb{R}^{n_{i}} \to \pi_{TM}^{-1}(\prod_{i} U_{i})$$

$$(x, v) \mapsto (p = \phi(x) = (\phi_{i}(x_{i}))_{i}, z = D_{x}\phi(D_{x}v)).$$

On the other hand, each tangent bundle TM_i has a local parametrization

$$\widehat{\phi}_i: V_i \times \mathbb{R}^{n_i} \to \pi_i^{-1}(U_i)
(x_i, v_i) \mapsto (\phi_i(x_i), D_{x_i}\phi_i(v_i)) ,$$

and putting these together, we form a parametrization of $\prod_i TM_i$

$$\psi: \prod_{i} (V_i \times \mathbb{R}^{n_i}) \to \prod_{i} \pi_i^{-1}(U_i)$$
$$(x_i, v_i)_i \mapsto (\phi_i(x_i), D_{x_i}\phi_i(v_i))_{i \in I}.$$

We claim that the local expression of f with respect to the charts $\widehat{\phi}$, ψ is the map

$$\widetilde{f}: \prod_{i} V_{i} \times \prod_{i} \mathbb{R}^{n_{i}} \to \prod_{i} (V_{i} \times \mathbb{R}^{n_{i}}) (x, v) \mapsto (x_{i}, v_{i})_{i \in I}.$$

Indeed, applying f to a point

$$\widehat{\phi}(x,v) = \left(\underbrace{\phi(x)}_{p} = (\phi_{i}(x_{i}))_{i}, \underbrace{D_{x}\phi(D_{x}v)}_{z}\right)$$

we get

$$f\left(\widehat{\phi}(x,v)\right) = f(p,z) = \left(\phi_i(x_i), \underbrace{D_p \pi_i^M(z)}_{z_i}\right)_{i \in I},$$

where

$$z_{i} = D_{p}\pi_{i}^{M}(z)$$

$$= D_{p}\pi_{i}^{U}(z)$$

$$= D_{p}\pi_{i}^{U}(D_{x}\phi(D_{x}v))$$

$$= D_{x}(\pi_{i}^{U} \circ \phi)(D_{x}v)$$

$$= D_{x}(\phi_{i} \circ \pi_{i}^{V})(D_{x}v)$$

$$= D_{x_{i}}\phi_{i}(D_{x}\pi_{i}^{V}(D_{x}v))$$

$$= D_{x_{i}}\phi_{i}(D_{x_{i}}v_{i}),$$

and we obtain the same result by computing

$$\psi\left(\widetilde{f}(x,v)\right) = \psi((x_i,v_i)_i) = (\phi_i(x_i), D_{x_i}\phi_i(v_i))_{i \in I}.$$

(To compute z_i we used the following facts. First, the map π_i^U is the restriction of π_i^M to the open set $\prod_i U_i \subseteq \prod_i M_i$, thus it has the same differential. Second, the identity $\pi_i^U \circ \phi = \phi_i \circ \pi_i^V$, which has been expressed above by a commutative diagram. Third, the identity $D_x \pi_i^V(D_x v) = D_{x_i} v_i$, valid for every vector $v \in \prod_i \mathbb{R}^{n_i}$, which can be verified directly by applying both derivations to a function $h \in \mathcal{C}^{\infty}(V_i)$.)

This shows that we have a commutative diagram

$$A := \pi_{TM}^{-1}(\prod_{i} U_{i}) \xrightarrow{f|_{A}^{B}} \prod_{i} \pi_{TM_{i}}^{-1}(U_{i}) =: B ,$$

$$\widehat{\phi} \uparrow \qquad \qquad \uparrow \psi$$

$$\prod_{i} V_{i} \times \prod_{i} \mathbb{R}^{n_{i}} \xrightarrow{\widetilde{f}} \prod_{i} (V_{i} \times \mathbb{R}^{n_{i}})$$

which means that \widetilde{f} is the local expression of f w.r.t. the charts $\widetilde{\phi}$, ψ . Since \widetilde{f} is a diffeomorphism (and so are the local parametrizations $\widehat{\phi}$, ψ), we conclude that $f|_A^B$ is a diffeomorphism. This implies that f is a local diffeomorphism, since we can do the same reasoning for each parametrization $\widehat{\phi}$ of TM.

To show that f is a diffeomorphism, we need just show that f is bijective. To see this, consider the projection map $\eta: \prod_i TM_i \to M$ that sends $(p_i, z_i)_i \mapsto (p_i)_i$. Note that $\eta \circ f = \pi_{TM}$. This means that for each point $p \in M$, the function f maps the fiber

$$\pi_{TM}^{-1}(p) = \{p\} \times T_p M$$

to the fiber

$$\eta^{-1}(p) = \prod_{i} (\{p_i\} \times T_{p_i} M).$$

We may then consider the restriction

$$\overline{f_p} := f|_{\pi_{TM}^{-1}(p)}^{\eta^{-1}(p)} : \quad \{p\} \times T_p M \quad \to \quad \prod_i (\{p_i\} \times T_{p_i} M)$$

$$(p, z) \qquad \mapsto \quad (p_i, z_i = D_p \pi_i^M(z))_{i \in I}$$

which is essentially the same thing as the linear map

$$f_p: T_pM \rightarrow \prod_i T_{p_i}M_i$$

 $z \mapsto (z_i)_{i \in I} = (D_p\pi_i^M(z))_{i \in I},$

since the point p is fixed. To show that f is bijective, it suffices to show that $\overline{f_p}$ is bijective for each point $p \in M$. An indeed, for each point $p \in M$, we can deduce that $\overline{f_p}$ is bijective from the local expression of f that we already have. Indeed, suppose we have parametrizations (V_i, U_i, ϕ_i) as above, such that $p \in \prod_i U_i$. Then the set $A = \pi_{TM}^{-1}(\prod_i U_i)$ contains the fiber $\pi_{TM}^{-1}(p)$, and the set $B = \pi_{TM_i}^{-1}(U_i) = \eta^{-1}(\prod_i U_i)$ contains the fiber $\eta^{-1}(p)$, and the fact that $f|_A^B$ is bijective implies that $\overline{f_p}$ is bijective. This finishes the proof that the map f is bijective, and therefore it is a diffeomorphism.

Finally, the fact that $\overline{f_p}$ is bijective also implies that the linear map $f_p: T_pM \to \prod_i T_{p_i}M_i$ is an isomorphism, which is the other claim that we had to prove.

(b) Show that $T\mathbb{S}^1$ is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$.

Solution. Note that the 1-sphere \mathbb{S}^1 (i.e. the circle) is diffeomorphic to the 1-torus \mathbb{T}^1 . Therefore, to solve the exercise, we may prove the following, more general fact. Consider the *n*-torus $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$, and let $\pi : \mathbb{R}^n \to \mathbb{T}^n$ be the quotient map $x \mapsto [x]$. We claim that the map $f : \mathbb{T}^n \times \mathbb{R}^n \to T\mathbb{T}^n$ given by

$$f([x], v) = ([x], D_x \pi(D_x v))$$

is a diffeomorphism.

To prove this, let us first recall how we define the smooth structure on the torus \mathbb{T}^n . (This is a problem of Series 6, so we will not give all the details.) We say that an open set $U \subseteq \mathbb{R}^n$ is **nice** if π is injective on U. Since the quotient map π is open, it follows that the map $\phi_U := \pi|_U^{\pi(U)} : U \to \pi(U)$ is a local parametrization of \mathbb{T}^n . These parametrizations ϕ_U (for $U \subseteq \mathbb{R}^n$ nice) constitute an inverse atlas on \mathbb{T}^n (exercise).

For each nice open set $U \subseteq \mathbb{R}^n$ we also get a local parametrization of $T\mathbb{T}^n$

$$\widehat{\phi_U}: U \times \mathbb{R}^n \to \pi_{T\mathbb{T}^n}^{-1}(\pi(U))$$

$$(x,v) \mapsto ([x]), \underbrace{D_x \phi_U}_{=D_x \pi}(D_x v))$$

(where $\pi_{T\mathbb{T}^n}: T\mathbb{T}^n \to \mathbb{T}^n$ is the projection), and a local parametrization of $\mathbb{T}^n \times \mathbb{R}^n$

$$\psi_U: \quad U \times \mathbb{R}^n \quad \to \quad \pi(U) \times \mathbb{R}^n$$

$$(x, v) \quad \mapsto \quad ([x], v)$$

The local expression of f with respect to the parametrizations ψ_U , ϕ_U is the identity map $\mathrm{id}_{U\times\mathbb{R}^n}$, since for $(x,v)\in U\times\mathbb{R}^n$ we have

$$f(\psi_U(x,v)) = f([x],v) = f([x],D_x\pi(D_xv)) = \phi_U(x,v).$$

From this we conclude that f is a diffeomorphism by reasoning as in the first part of the exercise.

Immersions and smooth Embeddings.

Exercise 4.5. Consider the map

$$f: \mathbb{R} \to \mathbb{R}^2: t \mapsto (2 + \tanh t) \cdot (\cos t, \sin t).$$

Show that f is an injective immersion. Is it a smooth embedding?

Solution. First notice that f is an immersion since $f'(t) \neq 0$ for every $t \in \mathbb{R}$. To see this observe that

$$f_* \Big|_t \left(\frac{\partial}{\partial t} \Big|_t \right) = \sum_{0 \le j < 2} \frac{\partial}{\partial t} \Big|_t \left(x^j \circ f \right) \left. \frac{\partial}{\partial x^j} \right|_{f(t)} = f_0'(t) \left. \frac{\partial}{\partial x^0} \right|_{f(t)} + f_1'(t) \left. \frac{\partial}{\partial x^1} \right|_{f(t)}$$

Hence if $f'(t) \neq 0$ then we have $\operatorname{Ker} f_*|_t = \{0\}$ which is equivalent to $f_*|_t$ injective for every $t \in \mathbb{R}$. Thus it suffices to compute

$$f_0'(t) = \left(\frac{1}{\cosh^2 t}\right)\cos t - (2 + \tanh t)\sin t$$

and

$$f'_1(t) = \left(\frac{1}{\cosh^2 t}\right) \sin t - (2 + \tanh t) \cos t$$

To see that $f'(t) \neq 0$ notice that

$$||f'(t)||^2 = \left(\frac{1}{\cosh^2 t}\right)^2 + (2 + \tanh t)^2 > 0$$

where $\|\cdot\|$ denotes the euclidean norm. This proves that f is an immersion. Furthermore the function f is an injection since the function $r(t) = \|f(t)\| = 2 + \tanh t$ is strictly increasing.

Note that f is an injective immersion. Let us prove that it is a smooth embedding. Consider the open set $U = \{x \in \mathbb{R}^2 : 1 < ||x|| < 3\}$. We will show that $f|^U : \mathbb{R} \to U$ is a proper map (hence a closed map; see e.g. Thm. 4.95 of Lee's book on topological manifolds). It follows that f is an embedding, since its the composite $f = \iota_U \circ f|^U$ of a closed embedding $f|^U$ and the inclusion map $\iota_U : U \to M$, which is an open embedding.

To see that $f|^U$ is proper we let $K \subseteq U$ be a compact set and verify that $f^{-1}(K) \subseteq \mathbb{R}$ is compact as well. Since K is closed (because it is a compact subset of a Hausdorff space) and f is continuous, the preimage $f^{-1}(K)$ is closed. Finally, we have to check that $f^{-1}(K)$ is bounded. Let a (resp b) be the minimum (resp. maximum) norm of a point $x \in X$. Note that $[a,b] \subseteq (1,3)$. It follows that $f^{-1}(K) \subseteq [a',b']$, where a',b' are the preimages of a,b by the monotonic map $t \mapsto 2 + \tanh t$.

Exercise 4.6. Consider the following subsets of \mathbb{R}^2 . Which is an embedded submanifold? Which is the image of an immersion?

(a) The "cross" $S := \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}.$

Solution. The cross S is not an embedded submanifold, because it is the union of the lines y = 0 and x = 0, and is therefore not locally Euclidean at the origin (exercise of series 1).

On the other hand, S is the disjoint union of two embedded submanifolds: S_0 = the horizontal axis, and S_1 = the vertical axis minus the origin. Let M be the 1-manifold obtained as disjoint union of S_0 and S_1 . The inclusion map of M into \mathbb{R}^2 is an injective immersion and has S as image.

(b) The "corner" $C := \{(x, y) \in \mathbb{R}^2 \mid xy = 0, x \ge 0, y \ge 0\}$

Solution. We will show that C is not even an immersed submanifold of \mathbb{R}^2 , so in particular it cannot be an embedded submanifold.

We proceed by contradiction. Suppose that C is an immersed submanifold, i.e. it has a topology τ and smooth structure such that the canonical inclusion $\iota: C \hookrightarrow \mathbb{R}^2$ is an immersion. Let (U,φ) be a smooth chart s.t. $(0,0) \in U$, $\varphi(0,0) = 0$ where $U \subset (C,\tau)$ is open ¹. By making the image $\varphi(U)$ smaller if necessary we can suppose that it is an open interval containing $0, \varphi(U) = J \subset \mathbb{R}$.

Since ι is an immersion, then

$$f := \iota \circ \varphi^{-1} : J \to \mathbb{R}^2$$

is a smooth map with non-zero derivatives everywhere. Here we emphasize that on J and \mathbb{R}^2 we have the standard Euclidean topology and smooth structure. In particular, we find that $f'(0) \neq (0,0)$. Hence either $f'_1(0) \neq 0$ or $f'_2(0) \neq 0$. If $f'_1(0) \neq 0$ then for any neighborhood of $0 \in J$, we can find points $t_1, t_2 \in J$ s.t. $f_1(t_1) < 0$ and $f_1(t_2) > 0$. It contradict the fact that $f_1 \geq 0$. Similarly we arrive at a contradiction if $f'_2(0) \neq 0$.

Exercise 4.7. Let N be a embedded n-submanifold of some m-manifold M. Show that there exists an open set $U \subseteq M$ that contains N as a closed subset.

Solution. Consider a family of charts $\varphi_i: W_i \to V_i$ that cover N and are slice charts for N, meaning that $\varphi_i(x) \in \mathbb{R}^n \times \{0\}$ iff $x \in N$, or equivalently, that $N \cap W_i = \varphi_i^{-1}(\mathbb{R}^n \times \{0\})$. Therefore $N \cap W_i$ is a closed subset of W_i for all i. We conclude that N is closed in $W = \bigcup_i W_i$, which is an open subset of M.

Exercise 4.8 (To hand in). Let $f: M \to N$ be an injective immersion of smooth manifolds. Show that there exists a closed embedding $M \to N \times \mathbb{R}$.

Hint: Recall that there exists a proper map $g:M\to\mathbb{R}$ (Exercise 3.2)

¹Note that in the case of an embedded manifold we could assume that $U = V \cap C$ for some $V \subset \mathbb{R}^2$ open, but here a-priori we do not know the topology τ .