Notes:

Local parametrizations. For some problems it is convenient to work with local parametrizations rather than charts. Recall that a local parametrization (or inverse chart) of a topological n-manifold M is a triple (V, U, ϕ), where $V \subseteq \mathbb{R}^{n}$ and $U \subseteq M$ are open sets, and $\phi: V \rightarrow U$ is a homeomorphism. An inverse atlas on M is a set \mathcal{A} of local parametrizations of N whose images cover M. An inverse atlas \mathcal{A} is smooth if the transition map $\psi^{-1} \circ \phi$ between any two local parametrizations $(V, U, \phi),\left(V^{\prime}, U^{\prime}, \psi\right) \in \mathcal{A}$ is smooth. A smooth inverse atlas defines a smooth structure.

Notation for tangent vectors. In some solutions we will use the following notation for tangent vectors. Let p be a point of a smooth n-manifold M, let (V, U, φ) be a local parametrization of M such that $p \in U$, and let $\widetilde{p}=\phi^{-1}(p)$. Then for each vector $\widetilde{v} \in \mathbb{R}^{n}$, we denote

$$
[\phi, \widetilde{v}]_{p}:=D_{\widetilde{p}} \phi\left(D_{\widetilde{p}} \widetilde{v}\right) \in T_{p} M .
$$

Warning: Be careful if you read the notes of last year: this tangent vector $[\varphi, \widetilde{v}]_{p}$ corresponds to the vector $\left[p, \phi^{-1}, \widetilde{v}\right]$ of the notes.

More explicitly, this tangent vector $[\phi, \widetilde{v}]_{p} \in T_{p} M$ is the derivation that maps each smooth function $h \in \mathcal{C}^{\infty}(M)$ to the number

$$
\begin{aligned}
{[\phi, v]_{p}(h) } & =\left(D_{\widetilde{p}} \phi\left(D_{\widetilde{p}} \widetilde{v}\right)\right)(h) \\
& =\left(D_{\widetilde{p}} \widetilde{v}\right)(h \circ \phi) \\
& =D_{\widetilde{p}}(h \circ \phi)(\widetilde{v}) \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0}(h \circ \phi)(\widetilde{p}+t \widetilde{v}) .
\end{aligned}
$$

Fixed the point $p \in M$ and the local parametrization ϕ, the map

$$
\begin{aligned}
\widehat{\phi}_{p}: \quad \mathbb{R}^{n} & \rightarrow T_{p} M \\
\widetilde{v} & \mapsto\left[\phi, \widetilde{v}_{p}\right.
\end{aligned}
$$

is an isomorphism, since it is the composite of the isomorphism

$$
\begin{array}{rcc}
\mathbb{R}^{n} & \rightarrow T_{\widetilde{p}} \mathbb{R}^{n} \\
\widetilde{v} & \mapsto D_{\widetilde{p}} v
\end{array}
$$

(seen in Lecture 3) with the isomorphism $D_{\widetilde{p}} \phi: T_{\widetilde{p}} \mathbb{R}^{n} \rightarrow T_{p} M$ (whose inverse is $D_{a} \phi^{-1}$). In conclusion, each tangent vector $v \in T_{p} M$ can be written in the form $v=[\varphi, v]_{p}$ for some unique vector $v \in \mathbb{R}^{n}$.

Differential of a map. The differential of a smooth map $f: M \rightarrow N$ at a point p can be expressed by the formula

$$
\mathrm{D}_{p} f\left([\phi, \widetilde{v}]_{p}\right)=\left[\psi, \mathrm{D}_{p}\left(\psi^{-1} \circ f \circ \varphi\right)(\widetilde{v})\right]_{f(p)},
$$

where
ϕ is a local parametrization of M that covers the point p and
ψ is a local parametrization of N that covers the point $f(p)$.
Change of parametrizations. In particular, putting $f=\operatorname{id}_{M}$, we see that if both ϕ and ψ are parametrizations of M that cover the same point $p \in M$, then

$$
[\varphi, \widetilde{v}]_{p}=[\psi, \widetilde{w}]_{p} \quad \text { if and only if } \quad \widetilde{w}=D_{\widetilde{p}}\left(\psi^{-1} \circ \phi\right)(\widetilde{v}),
$$

where $\widetilde{p}=\phi^{-1}(p)$.

Tangent spaces and Tangent bundles.

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let φ and ψ be smooth charts on a smooth manifold M defined on the same domain U. Let $\left(x^{1}, \ldots, x^{n}\right)$ be the coordinates induced by φ and $\left(z^{1}, \ldots, z^{n}\right)$ the coordinates induced by ψ. If the first coordinate functions x^{1} and z^{1} agree ($x^{1}=z^{1}$ on U), this does not imply $\left.\frac{\partial}{\partial x^{1}}\right|_{p}=\left.\frac{\partial}{\partial z^{1}}\right|_{p}$ for $p \in U$.

Work out a simple example of this fact e.g. on $M=\mathbb{R}^{2}$ by considering on the one hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given by $u=x, v=x+y$.
This shows that $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ depends on the whole system $\left(x^{1}, \ldots, x^{n}\right)$, not only on x^{i}.
Solution. The two coordinate charts are related by

$$
\left\{\begin{array} { l }
{ u = x } \\
{ v = x + y }
\end{array} \quad \left\{\begin{array}{l}
x=u \\
y=v-u .
\end{array}\right.\right.
$$

By the chain rule we have

$$
\frac{\partial}{\partial u}=\frac{\partial x}{\partial u} \cdot \frac{\partial}{\partial x}+\frac{\partial y}{\partial u} \cdot \frac{\partial}{\partial y}=\frac{\partial}{\partial x}-\frac{\partial}{\partial y} .
$$

We consider for example the function $f(x, y)=x y$ on \mathbb{R}^{2}. The coordinate derivatives of f with respect to two different charts are

$$
\begin{aligned}
& \frac{\partial}{\partial x} f=y \\
& \frac{\partial}{\partial u} f=y-x \neq \frac{\partial}{\partial x} f
\end{aligned}
$$

Thus the coordinate vectors depends on the whole system.
We consider for example a linear function $f(x, y)=a x+b y$ on \mathbb{R}^{2}. The coordinate derivatives of f with respect to two different charts are

$$
\begin{aligned}
\frac{\partial}{\partial x} f & =a \\
\frac{\partial}{\partial u} f & =a-b \neq \frac{\partial}{\partial x} f
\end{aligned}
$$

Thus the coordinate vectors depends on the whole system.
Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional vector space, endowed with the natural smooth structure given by picking an isomorphism $\mathbb{R}^{n} \rightarrow V$ (via the Smooth Charts Lemma)
(a) Fix $p \in V$. To every $v \in V$ we associate the curve passing through p

$$
\gamma_{v}: \mathbb{R} \rightarrow V: t \mapsto p+t v
$$

Show that the map $\Phi_{p}: V \rightarrow T_{p} V: v \mapsto \gamma_{v}^{\prime}(0)$ is an isomorphism of vector spaces.

Solution. To prove that the map $\Phi_{p}: V \rightarrow T_{p} V$ is an isomorphism, we fix a linear isomorphism $\phi: \mathbb{R}^{n} \rightarrow V$ and use it as a local parametrization of V. Our plan is to take profit from the fact that the linear map

$$
\begin{array}{ccc}
\mathbb{R}^{n} & \rightarrow & T_{p} V \\
\widetilde{v} & \mapsto & {[\phi, \widetilde{v}]_{p}} \\
& 2 &
\end{array}
$$

is an isomorphism. For any vector $v \in V$, the tangent vector $\Phi_{p}(v) \in T_{p} V$ is the derivation that maps each smooth function $h \in \mathcal{C}^{\infty}(V)$ to the number

$$
\begin{aligned}
\Phi_{p}(v)(h) & =\gamma_{v}^{\prime}(0)(h) \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0} h\left(\gamma_{v}(t)\right) \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0} h(p+t v) \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0} h\left(\phi(\widetilde{p}+t \phi(\widetilde{v})) \quad \text { setting } \widetilde{p}=\phi^{-1}(p) \text { and } \widetilde{v}:=\phi^{-1}(v)\right. \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0}(h \circ \phi)(\widetilde{p}+t \widetilde{v}) \quad \text { since } \phi \text { is linear } \\
& =D_{\widetilde{p}} \widetilde{v}(h \circ \phi) \\
& =\left(D_{\left.\widetilde{p} \phi\left(D_{\widetilde{p}} \widetilde{v}\right)\right)(h)}\right. \\
& =[\phi, \widetilde{v}]_{p}(h) \\
& =\left[\phi, \phi^{-1}(v)\right]_{p}(h)
\end{aligned}
$$

This computation shows that $\Phi_{p}(v)=\left[\phi, \phi^{-1}(v)\right]_{p}$ for any vector $v \in V$. This means that Φ_{p} is the composite of the isomorphisms ϕ^{-1} and $\widetilde{v} \mapsto[\phi, \widetilde{v}]_{P}$. We conclude that Φ_{p} is an isomorphism as well.
(b) Let $f: V \rightarrow W$ be a linear map between vector spaces V, W. Consider the differential $D_{p} f: T_{p} V \rightarrow T_{f(p)} W$ at any point $p \in V$. Identifying $T_{p} V \cong V$ and $T_{f(p)} W \cong W$ via the isomorphisms $\Phi_{p}, \Phi_{f(p)}$, show that $D_{p} f$ is identified with f. That is, show that the following diagram commutes:

Solution. To check that the diagram commutes, we take two linear isomorphisms $\phi: \mathbb{R}^{m} \rightarrow V$ and $\psi: \mathbb{R}^{m} \rightarrow W$ and employ them as parametrizations. Let us show that for any vector $v \in V$ we have

In the previous item we have shown that for any vector $\widetilde{v} \in \mathbb{R}^{n}$ we have $\Phi_{p}(v)=\left[\phi, \phi^{-1}(v)\right] \in T_{p} V$, and in the same way we see that $\Phi_{f(p)}(f(v))=$ $\left[\psi, \psi^{-1}(f(v))\right] \in T_{f(p)} W$. To finish, we verify that

$$
\begin{aligned}
\mathrm{D}_{p} f\left(\left[\phi, \phi^{-1}(v)\right]_{p}\right) & =\left[\psi, \mathrm{D}_{\phi(p)}\left(\psi^{-1} f \phi\right)\left(\phi^{-1}(v)\right)\right]_{f(p)} \\
& =\left[\psi,\left(\psi^{-1} f \phi\right)\left(\phi^{-1}(v)\right)\right]_{f(p)} \\
& =\left[\psi, \psi^{-1}(f(v))\right]_{f(p)} .
\end{aligned}
$$

Here, we used the fact that $\mathrm{D}_{\phi(p)}\left(\psi^{-1} f \phi\right)=\psi^{-1} f \phi$ since the map $\psi^{-1} f \phi$: $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear.

Exercise 4.3 (Differential of the determinant function). Consider the determinant function det : $M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$, where $M_{n}(\mathbb{R}) \simeq \mathbb{R}^{n \times n}$ is the vector space of real $n \times n$
matrices, with its natural smooth structure. We want to compute its differential transformation D_{A} det at any matrix $A \in \mathrm{GL}_{n}(\mathbb{R})$ (i.e. at any invertible matrix),

$$
D_{A} \operatorname{det}: T_{A} M_{n}(\mathbb{R}) \rightarrow T_{\operatorname{det}(A)} \mathbb{R}
$$

(Note that we may identify $T_{A} M_{n}(\mathbb{R})$ with $M_{n}(\mathbb{R})$ and $T_{\operatorname{det}(A)} \mathbb{R}$ with \mathbb{R}.)
(a) Verify that det is a smooth function.

Hint: Write the determinant as a sum over all n-permutations.
Solution. The determinant can be written as

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{0 \leq i<n} a_{i, \sigma(i)} .
$$

Each of the terms $f_{\sigma}(A):=\operatorname{sgn}(\sigma) \prod_{0 \leq i<n} a_{i, \sigma(i)}$ is a monomial, hence a smooth function.
(b) Show that the differential of det at the identity matrix $I \in M_{n}(\mathbb{R})$ is

$$
D_{I} \operatorname{det}(B)=\operatorname{tr}(B)
$$

where tr denotes the trace.
Solution. Let's define a curve $\gamma_{B}: \mathbb{R} \rightarrow G L(n): t \rightarrow I+t B$, for $B \in G L(n)$. Using the identification $\Phi_{I}: G L(n) \rightarrow T_{I}(G L(n)): B \rightarrow \gamma_{B}^{\prime}(0)$ (and the usual identification $T_{1} \mathbb{R} \cong \mathbb{R}$) we have

$$
\begin{aligned}
D_{I} \operatorname{det}(B) & =D_{I} \operatorname{det}\left(\gamma_{B}^{\prime}(0)\right) \\
& =\left(\operatorname{det} \circ \gamma_{B}\right)^{\prime}(0) \\
& =\left.\frac{d}{d t}\right|_{t=0}(\operatorname{det}(I+t B)) \\
& =\left.\sum_{\sigma \in S_{n}} \frac{d}{d t}\right|_{t=0} f_{\sigma}(I+t B)
\end{aligned}
$$

Let us derivate each of the monomials f_{σ}.
The coefficients of the matrix $A=I+t B$ are $a_{i, j}=\delta_{i, j}+t b_{i, j}$, where $\delta_{i, j}$ is the Kronecker delta. Note that at $t=0$ all the coefficients that are not on the diagonal vanish.If $\sigma \neq \mathrm{id}_{n}$, then the monomial f_{σ} has at least two coefficients that are not on the diagonal, hence we have $\left.\frac{d}{d t}\right|_{t=0}\left(f_{\sigma}(I+t B)\right)=0$. Thus the only term which survives is the one corresponding to the permutation $\sigma=\mathrm{id}_{n}$, and we have

$$
\begin{aligned}
D_{I} \operatorname{det}(B) & =\left.\frac{d}{d t}\right|_{t=0} f_{\mathrm{id}_{n}}(I+t B) \\
& =\left.\frac{d}{d t}\right|_{t=0} \sum_{0 \leq i<n}\left(1+t b_{i, i,}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(1+t \operatorname{tr}(B)+t^{2} \ldots\right) \\
& =\operatorname{tr} B
\end{aligned}
$$

(c) Show that for arbitrary $A \in \mathrm{GL}_{n}(\mathbb{R}), B \in M_{n}(\mathbb{R})$.

$$
D_{A} \operatorname{det}(B)=(\operatorname{det} A) \operatorname{tr}\left(A^{-1} B\right)
$$

Hint: Write $\operatorname{det}(A+t B)=(\operatorname{det} A)\left(\operatorname{det}\left(I+t A^{-1} B\right)\right)$.

Solution. Similarly, we define $\gamma_{B}: \mathbb{R} \rightarrow G L(n): t \rightarrow A+t B$, for $B \in G L(n)$. With the identification $\Phi_{A}: G L(n) \rightarrow T_{A}(G L(n)): B \rightarrow \gamma_{B}^{\prime}(0)$ we have

$$
\begin{aligned}
D_{A} \operatorname{det}(B) & =D_{A} \operatorname{det}\left(\gamma_{B}^{\prime}(0)\right) \\
& =\left(\operatorname{deto} \gamma_{B}\right)^{\prime}(0) \\
& =\left.\frac{d}{d t}\right|_{t=0}(\operatorname{det}(A+t B)) \\
& =\operatorname{det}(A) \lim _{t \rightarrow 0} \frac{\left.1+t \operatorname{tr}\left(A^{-1} B\right)+O\left(t^{2}\right)\right)-1}{t} \\
& =\operatorname{det}(A) \operatorname{tr}\left(A^{-1} B\right)
\end{aligned}
$$

(d) Show that D_{A} det is the null linear transformation if $A=0$ and $n \geq 2$.

Solution. It suffices to check that $f_{B}^{\prime}(t)=0$ when $t=0$ for the function

$$
f_{B}(t)=\operatorname{det}(A+t B)=\operatorname{det}(t B)=t^{n} \operatorname{det}(B) .
$$

Now, $f_{B}^{\prime}(t)=n t^{n-1} \operatorname{det}(B)$, thus $f_{B}^{\prime}(0)=0$ as required.
Exercise 4.4 (Tangent Bundles). (a) Show that $T_{\left(p_{1}, p_{2}\right)} M_{1} \times M_{2} \cong T_{p_{1}} M_{1} \oplus$ $T_{p_{2}} M_{2}$. Show that in fact this extends to the tangent bundles, i.e. there is a diffeomorphism $T\left(M_{1} \times M_{2}\right) \cong T M_{1} \times T M_{2}$.
Solution. Let us first recall how we define the smooth structure on a tangent bundle and the smooth structure of a product manifold. After that, we will combine these concepts to study the tangent bundle of a product manifold.

Smooth structure of a tangent bundle. The smooth structure on the tangent bundle $T N$ of a smooth n-manifold N is defined by the local parametrizations of the form

$$
\begin{array}{ccc}
\widehat{\phi}: \begin{array}{cc}
V \times \mathbb{R}^{n} & \rightarrow \\
\pi_{T N}^{-1}(U) \\
(x, v) & \mapsto
\end{array}\left(\phi(x), D_{x} \phi\left(D_{x} v\right)\right)
\end{array}
$$

where (V, U, ϕ) is a local parametrization of N and $\pi_{T N}: T N \rightarrow N$ is the canonic projection $(p, w) \mapsto p$.

Smooth structure of a product manifold. The smooth structure on a product manifold $\prod_{i} M_{i}$ is defined by the local parametrizations of the form

$$
\begin{array}{cccc}
\phi: \quad \prod_{i} V_{i} & \rightarrow & \prod_{i} U_{i} \\
x=\left(x_{i}\right)_{i} & \mapsto & p=\left(\phi_{i}\left(x_{i}\right)\right)_{i},
\end{array},
$$

where $\left(V_{i}, U_{i}, \phi_{i}\right)$ is a local parametrization of M_{i} for each i.
Tangent bundle of a product manifold. We consider the tangent bundle of a product manifold $M=\prod_{i \in I} M_{i}$. For each $i \in I$, we define the i-th component of a tangent vector $z \in T_{p} M$ as the vector $z_{i}=D_{p} \pi_{i}^{M}(v) \in T_{p_{i}} M_{i}$, where $\pi_{i}^{M}: M \rightarrow M_{i}$ the i-th projection $p=\left(p_{j}\right)_{j} \mapsto p_{i}$. We claim that for each point $p \in M$, the linear map

$$
\begin{aligned}
f_{p}: \quad T_{p} M & \rightarrow \prod_{i} T_{p_{i}} M_{i} \\
z & \mapsto\left(z_{i}\right)_{i \in I}=\left(D_{p} \pi_{i}^{M}(z)\right)_{i \in I}
\end{aligned}
$$

is an isomorphism. Moreover, we claim that the map

$$
\begin{array}{cc}
f: \quad \begin{array}{cc}
T M & \rightarrow \\
& \prod_{i} T M_{i} \\
(p, z) & \mapsto \\
\left(p_{i}, D_{p} \pi_{i}^{M}(z)\right)_{i \in I}
\end{array}
\end{array}
$$

is a diffeomorphism.
Let us prove the second claim first. To do so, we examine a local expression of f constructed as follows. For each $i \in I$, take a local parametrization $\left(V_{i}, U_{i}, \phi_{i}\right)$ of M_{i}. From these we construct, as stated above, a local
parametrization $\left(\prod_{i} V_{i}, \prod_{i} U_{i}, \phi\right)$ of M, which is characterized by the commutative diagram

where $\pi_{i}^{U}: \prod_{j} U_{j} \rightarrow U_{i}$ and $\pi_{i}^{V}: \prod_{j} V_{j} \rightarrow V_{i}$ are the i-th projections. From this parametrization of M we obtain the parametrization of $T M$

$$
\begin{aligned}
\widehat{\phi}: \quad \prod_{i} V_{i} \times \prod_{i} \mathbb{R}^{n_{i}} & \rightarrow \\
(x, v) & \mapsto\left(p=\phi(x)=\left(\phi_{i}^{-1}\left(x_{i}\right)\right)_{i}, z=D_{x} \phi\left(D_{x} v\right)\right) .
\end{aligned}
$$

On the other hand, each tangent bundle $T M_{i}$ has a local parametrization

$$
\begin{array}{rccc}
\widehat{\phi}_{i}: \quad V_{i} \times \mathbb{R}^{n_{i}} & \rightarrow & \pi_{i}^{-1}\left(U_{i}\right) \\
\left(x_{i}, v_{i}\right) & \mapsto & \left(\phi_{i}\left(x_{i}\right), D_{x_{i}} \phi_{i}\left(v_{i}\right)\right),
\end{array}
$$

and putting these together, we form a parametrization of $\prod_{i} T M_{i}$

$$
\begin{array}{rlc}
\psi: \quad \prod_{i}\left(V_{i} \times \mathbb{R}^{n_{i}}\right) & \rightarrow & \prod_{i} \pi_{i}^{-1}\left(U_{i}\right) \\
\left(x_{i}, v_{i}\right)_{i} & \mapsto & \left(\phi_{i}\left(x_{i}\right), D_{x_{i}} \phi_{i}\left(v_{i}\right)\right)_{i \in I} .
\end{array}
$$

We claim that the local expression of f with respect to the charts $\widehat{\phi}, \psi$ is the map

$$
\begin{array}{ccc}
\tilde{f}: \prod_{i} V_{i} \times \prod_{i} \mathbb{R}^{n_{i}} & \rightarrow & \prod_{i}\left(V_{i} \times \mathbb{R}^{n_{i}}\right) \\
(x, v) & \mapsto & \left(x_{i}, v_{i}\right)_{i \in I}
\end{array}
$$

Indeed, applying f to a point

$$
\widehat{\phi}(x, v)=(\underbrace{\phi(x)}_{p}=\left(\phi_{i}\left(x_{i}\right)\right)_{i}, \underbrace{D_{x} \phi\left(D_{x} v\right)}_{z})
$$

we get

$$
f(\widehat{\phi}(x, v))=f(p, z)=(\phi_{i}\left(x_{i}\right), \underbrace{D_{p} \pi_{i}^{M}(z)}_{z_{i}})_{i \in I},
$$

where

$$
\begin{aligned}
z_{i} & =D_{p} \pi_{i}^{M}(z) \\
& =D_{p} \pi_{i}^{U}(z) \\
& =D_{p} \pi_{i}^{U}\left(D_{x} \phi\left(D_{x} v\right)\right) \\
& =D_{x}\left(\pi_{i}^{U} \circ \phi\right)\left(D_{x} v\right) \\
& =D_{x}\left(\phi_{i} \circ \pi_{i}^{V}\right)\left(D_{x} v\right) \\
& =D_{x_{i}} \phi_{i}\left(D_{x} \pi_{i}^{V}\left(D_{x} v\right)\right) \\
& =D_{x_{i}} \phi_{i}\left(D_{x_{i}} v_{i}\right),
\end{aligned}
$$

and we obtain the same result by computing

$$
\psi(\widetilde{f}(x, v))=\psi\left(\left(x_{i}, v_{i}\right)_{i}\right)=\left(\phi_{i}\left(x_{i}\right), D_{x_{i}} \phi_{i}\left(v_{i}\right)\right)_{i \in I} .
$$

(To compute z_{i} we used the following facts. First, the map π_{i}^{U} is the restriction of π_{i}^{M} to the open set $\prod_{i} U_{i} \subseteq \prod_{i} M_{i}$, thus it has the same differential. Second, the identity $\pi_{i}^{U} \circ \phi=\phi_{i} \circ \pi_{i}^{V}$, which has been expressed above by a commutative diagram. Third, the identity $D_{x} \pi_{i}^{V}\left(D_{x} v\right)=D_{x_{i}} v_{i}$, valid for every vector $v \in \prod_{i} \mathbb{R}^{n_{i}}$, which can be verified directly by applying both derivations to a function $h \in \mathcal{C}^{\infty}\left(V_{i}\right)$.)

This shows that we have a commutative diagram

which means that \widetilde{f} is the local expression of f w.r.t. the charts $\widetilde{\phi}, \psi$. Since \widetilde{f} is a diffeomorphism (and so are the local parametrizations $\widehat{\phi}, \psi$), we conclude that $\left.f\right|_{A} ^{B}$ is a diffeomorphism. This implies that f is a local diffeomorphism, since we can do the same reasoning for each parametrization $\widehat{\phi}$ of $T M$.

To show that f is a diffeomorphism, we need just show that f is bijective. To see this, consider the projection map $\eta: \prod_{i} T M_{i} \rightarrow M$ that sends $\left(p_{i}, z_{i}\right)_{i} \mapsto\left(p_{i}\right)_{i}$. Note that $\eta \circ f=\pi_{T M}$. This means that for each point $p \in M$, the function f maps the fiber

$$
\pi_{T M}^{-1}(p)=\{p\} \times T_{p} M
$$

to the fiber

$$
\eta^{-1}(p)=\prod_{i}\left(\left\{p_{i}\right\} \times T_{p_{i}} M\right) .
$$

We may then consider the restriction

$$
\begin{aligned}
\overline{f_{p}}:=\left.f\right|_{\pi_{T M}^{-1}(p)} ^{\eta^{-1}(p)}:\{p\} \times T_{p} M & \rightarrow \prod_{i}\left(\left\{p_{i}\right\} \times T_{p_{i}} M\right) \\
(p, z) & \mapsto \\
& \left(p_{i}, z_{i}=D_{p} \pi_{i}^{M}(z)\right)_{i \in I}
\end{aligned}
$$

which is essentially the same thing as the linear map

$$
\begin{aligned}
& f_{p}: T_{p} M \rightarrow \prod_{i} T_{p_{i}} M_{i} \\
& z \mapsto \\
&\left(z_{i}\right)_{i \in I}
\end{aligned}=\left(D_{p} \pi_{i}^{M}(z)\right)_{i \in I},
$$

since the point p is fixed. To show that f is bijective, it suffices to show that $\overline{f_{p}}$ is bijective for each point $p \in M$. An indeed, for each point $p \in M$, we can deduce that $\overline{f_{p}}$ is bijective from the local expression of f that we already have. Indeed, suppose we have parametrizations $\left(V_{i}, U_{i}, \phi_{i}\right)$ as above, such that $p \in \prod_{i} U_{i}$. Then the set $A=\pi_{T M}^{-1}\left(\prod_{i} U_{i}\right)$ contains the fiber $\pi_{T M}^{-1}(p)$, and the set $B=\pi_{T M_{i}}^{-1}\left(U_{i}\right)=\eta^{-1}\left(\prod_{i} U_{i}\right)$ contains the fiber $\eta^{-1}(p)$, and the fact that $\left.f\right|_{A} ^{B}$ is bijective implies that $\overline{f_{p}}$ is bijective. This finishes the proof that the map f is bijective, and therefore it is a diffeomorphism.

Finally, the fact that $\overline{f_{p}}$ is bijective also implies that the linear map f_{p} : $T_{p} M \rightarrow \prod_{i} T_{p_{i}} M_{i}$ is an isomorphism, which is the other claim that we had to prove.
(b) Show that $T \mathbb{S}^{1}$ is diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$.

Solution. Note that the 1 -sphere \mathbb{S}^{1} (i.e. the circle) is diffeomorphic to the 1 -torus \mathbb{T}^{1}. Therefore, to solve the exercise, we may prove the following, more general fact. Consider the n-torus $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$, and let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ be the quotient map $x \mapsto[x]$. We claim that the map $f: \mathbb{T}^{n} \times \mathbb{R}^{n} \rightarrow T \mathbb{T}^{n}$ given by

$$
f([x], v)=\left([x], D_{x} \pi\left(D_{x} v\right)\right)
$$

is a diffeomorphism.
To prove this, let us first recall how we define the smooth structure on the torus \mathbb{T}^{n}. (This is a problem of Series 6 , so we will not give all the details.) We say that an open set $U \subseteq \mathbb{R}^{n}$ is nice if π is injective on U. Since the quotient map π is open, it follows that the map $\phi_{U}:=\left.\pi\right|_{U} ^{\pi(U)}: U \rightarrow \pi(U)$ is a local parametrization of \mathbb{T}^{n}. These parametrizations ϕ_{U} (for $U \subseteq \mathbb{R}^{n}$ nice) constitute an inverse atlas on \mathbb{T}^{n} (exercise).

For each nice open set $U \subseteq \mathbb{R}^{n}$ we also get a local parametrization of $T \mathbb{T}^{n}$

$$
\begin{array}{rlc}
\widehat{\phi_{U}}: U \times \mathbb{R}^{n} & \rightarrow & \pi_{T \mathbb{T}^{n}}^{-1}(\pi(U)) \\
(x, v) & \mapsto & ([x]), \underbrace{D_{x} \phi_{U}}_{=D_{x} \pi}\left(D_{x} v\right))
\end{array}
$$

(where $\pi_{T \mathbb{T}^{n}}: T \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ is the projection), and a local parametrization of $\mathbb{T}^{n} \times \mathbb{R}^{n}$

$$
\begin{array}{rllc}
\psi_{U}: & U \times \mathbb{R}^{n} & \rightarrow & \pi(U) \times \mathbb{R}^{n} \\
(x, v) & \mapsto & ([x], v)
\end{array}
$$

The local expression of f with respect to the parametrizations ψ_{U}, ϕ_{U} is the identity map $\operatorname{id}_{U \times \mathbb{R}^{n}}$, since for $(x, v) \in U \times \mathbb{R}^{n}$ we have

$$
f\left(\psi_{U}(x, v)\right)=f([x], v)=f\left([x], D_{x} \pi\left(D_{x} v\right)\right)=\phi_{U}(x, v)
$$

From this we conclude that f is a diffeomorphism by reasoning as in the first part of the exercise.

Immersions and smooth Embeddings.

Exercise 4.5. Consider the map

$$
f: \mathbb{R} \rightarrow \mathbb{R}^{2}: t \mapsto(2+\tanh t) \cdot(\cos t, \sin t)
$$

Show that f is an injective immersion. Is it a smooth embedding?
Solution. First notice that f is an immersion since $f^{\prime}(t) \neq 0$ for every $t \in \mathbb{R}$. To see this observe that

$$
\left.f_{*}\right|_{t}\left(\left.\frac{\partial}{\partial t}\right|_{t}\right)=\left.\left.\sum_{0 \leq j<2} \frac{\partial}{\partial t}\right|_{t}\left(x^{j} \circ f\right) \frac{\partial}{\partial x^{j}}\right|_{f(t)}=\left.f_{0}^{\prime}(t) \frac{\partial}{\partial x^{0}}\right|_{f(t)}+\left.f_{1}^{\prime}(t) \frac{\partial}{\partial x^{1}}\right|_{f(t)}
$$

Hence if $f^{\prime}(t) \neq 0$ then we have $\left.\operatorname{Ker} f_{*}\right|_{t}=\{0\}$ which is equivalent to $\left.f_{*}\right|_{t}$ injective for every $t \in \mathbb{R}$. Thus it suffices to compute

$$
f_{0}^{\prime}(t)=\left(\frac{1}{\cosh ^{2} t}\right) \cos t-(2+\tanh t) \sin t
$$

and

$$
f_{1}^{\prime}(t)=\left(\frac{1}{\cosh ^{2} t}\right) \sin t-(2+\tanh t) \cos t
$$

To see that $f^{\prime}(t) \neq 0$ notice that

$$
\left\|f^{\prime}(t)\right\|^{2}=\left(\frac{1}{\cosh ^{2} t}\right)^{2}+(2+\tanh t)^{2}>0
$$

where $\|\cdot\|$ denotes the euclidean norm. This proves that f is an immersion. Furthermore the function f is an injection since the function $r(t)=\|f(t)\|=2+\tanh t$ is strictly increasing.

Note that f is an injective immersion. Let us prove that it is a smooth embedding. Consider the open set $U=\left\{x \in \mathbb{R}^{2}: 1<\|x\|<3\right\}$. We will show that $\left.f\right|^{U}: \mathbb{R} \rightarrow U$ is a proper map (hence a closed map; see e.g. Thm. 4.95 of Lee's book on topological manifolds). It follows that f is an embedding, since its the composite $f=\left.\iota_{U} \circ f\right|^{U}$ of a closed embedding $\left.f\right|^{U}$ and the inclusion map $\iota_{U}: U \rightarrow M$, which is an open embedding.

To see that $\left.f\right|^{U}$ is proper we let $K \subseteq U$ be a compact set and verify that $f^{-1}(K) \subseteq$ \mathbb{R} is compact as well. Since K is closed (because it is a compact subset of a Hausdorff space) and f is continuous, the preimage $f^{-1}(K)$ is closed. Finally, we have to check that $f^{-1}(K)$ is bounded. Let a (resp b) be the minimum (resp. maximum) norm of a point $x \in X$. Note that $[a, b] \subseteq(1,3)$. It follows that $f^{-1}(K) \subseteq\left[a^{\prime}, b^{\prime}\right]$, where a^{\prime}, b^{\prime} are the preimages of a, b by the monotonic map $t \mapsto 2+\tanh t$.

Exercise 4.6. Consider the following subsets of \mathbb{R}^{2}. Which is an embedded submanifold ? Which is the image of an immersion ?
(a) The "cross" $S:=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0\right\}$.

Solution. The cross S is not an embedded submanifold, because it is the union of the lines $y=0$ and $x=0$, and is therefore not locally Euclidean at the origin (exercise of series 1).

On the other hand, S is the disjoint union of two embedded submanifolds: $S_{0}=$ the horizontal axis, and $S_{1}=$ the vertical axis minus the origin. Let M be the 1-manifold obtained as disjoint union of S_{0} and S_{1}. The inclusion map of M into \mathbb{R}^{2} is an injective immersion and has S as image.
(b) The "corner" $C:=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0, x \geq 0, y \geq 0\right\}$

Solution. We will show that C is not even an immersed submanifold of \mathbb{R}^{2}, so in particular it cannot be an embedded submanifold.

We proceed by contradiction. Suppose that C is an immersed submanifold, i.e. it has a topology τ and smooth structure such that the canonical inclusion $\iota: C \hookrightarrow \mathbb{R}^{2}$ is an immersion. Let (U, φ) be a smooth chart s.t. $(0,0) \in U$, $\varphi(0,0)=0$ where $U \subset(C, \tau)$ is open ${ }^{1}$. By making the image $\varphi(U)$ smaller if necessary we can suppose that it is an open interval containing $0, \varphi(U)=$ $J \subset \mathbb{R}$.

Since ι is an immersion, then

$$
f:=\iota \circ \varphi^{-1}: J \rightarrow \mathbb{R}^{2}
$$

is a smooth map with non-zero derivatives everywhere. Here we emphasize that on J and \mathbb{R}^{2} we have the standard Euclidean topology and smooth structure. In particular, we find that $f^{\prime}(0) \neq(0,0)$. Hence either $f_{1}^{\prime}(0) \neq 0$ or $f_{2}^{\prime}(0) \neq 0$. If $f_{1}^{\prime}(0) \neq 0$ then for any neighborhood of $0 \in J$, we can find points $t_{1}, t_{2} \in J$ s.t. $f_{1}\left(t_{1}\right)<0$ and $f_{1}\left(t_{2}\right)>0$. It contradict the fact that $f_{1} \geq 0$. Similarly we arrive at a contradiction if $f_{2}^{\prime}(0) \neq 0$.
Exercise 4.7. Let N be a embedded n-submanifold of some m-manifold M. Show that there exists an open set $U \subseteq M$ that contains N as a closed subset.

Solution. Consider a family of charts $\varphi_{i}: W_{i} \rightarrow V_{i}$ that cover N and are slice charts for N, meaning that $\varphi_{i}(x) \in \mathbb{R}^{n} \times\{0\}$ iff $x \in N$, or equivalently, that $N \cap W_{i}=$ $\varphi_{i}^{-1}\left(\mathbb{R}^{n} \times\{0\}\right)$. Therefore $N \cap W_{i}$ is a closed subset of W_{i} for all i. We conclude that N is closed in $W=\bigcup_{i} W_{i}$, which is an open subset of M.

Exercise 4.8 (To hand in). Let $f: M \rightarrow N$ be an injective immersion of smooth manifolds. Show that there exists a closed embedding $M \rightarrow N \times \mathbb{R}$.
Hint: Recall that there exists a proper map $g: M \rightarrow \mathbb{R}$ (Exercise 3.2)

[^0]
[^0]: ${ }^{1}$ Note that in the case of an embedded manifold we could assume that $U=V \cap C$ for some $V \subset \mathbb{R}^{2}$ open, but here a-priori we do not know the topology τ.

