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Notes:

Local parametrizations. For some problems it is convenient to work with local

parametrizations rather than charts. Recall that a local parametrization (or in-

verse chart) of a topological n-manifold M is a triple (V,U, φ), where V ⊆ Rn and

U ⊆ M are open sets, and φ : V → U is a homeomorphism. An inverse atlas on

M is a set A of local parametrizations of N whose images cover M . An inverse atlas

A is smooth if the transition map ψ−1 ◦ φ between any two local parametriza-

tions (V,U, φ), (V ′, U ′, ψ) ∈ A is smooth. A smooth inverse atlas defines a smooth

structure.

Notation for tangent vectors. In some solutions we will use the following

notation for tangent vectors. Let p be a point of a smooth n-manifold M , let (V,U, ϕ)

be a local parametrization of M such that p ∈ U , and let p̃ = φ−1(p). Then for each

vector ṽ ∈ Rn, we denote

[φ, ṽ]p := Dp̃φ(Dp̃ṽ) ∈ TpM.

Warning: Be careful if you read the notes of last year: this tangent vector [ϕ, ṽ]p
corresponds to the vector [p, φ−1, ṽ] of the notes.

More explicitly, this tangent vector [φ, ṽ]p ∈ TpM is the derivation that maps each

smooth function h ∈ C∞(M) to the number

[φ, v]p(h) = (Dp̃φ(Dp̃ṽ))(h)

= (Dp̃ṽ)(h ◦ φ)

= Dp̃(h ◦ φ)(ṽ)

=
∂

∂t

∣∣∣∣
t=0

(h ◦ φ)(p̃+ t ṽ).

Fixed the point p ∈M and the local parametrization φ, the map

φ̂p : Rn → TpM

ṽ 7→ [φ, ṽ]p

is an isomorphism, since it is the composite of the isomorphism

Rn → Tp̃Rn
ṽ 7→ Dp̃v

(seen in Lecture 3) with the isomorphism Dp̃φ : Tp̃Rn → TpM (whose inverse is

Daφ
−1). In conclusion, each tangent vector v ∈ TpM can be written in the form

v = [ϕ, v]p for some unique vector v ∈ Rn.

Differential of a map. The differential of a smooth map f : M → N at a point

p can be expressed by the formula

Dpf ([φ, ṽ]p) = [ψ, Dp(ψ
−1 ◦ f ◦ ϕ)(ṽ)]f(p),

where

φ is a local parametrization of M that covers the point p and

ψ is a local parametrization of N that covers the point f(p).

Change of parametrizations. In particular, putting f = idM , we see that if

both φ and ψ are parametrizations of M that cover the same point p ∈M , then

[ϕ, ṽ]p = [ψ, w̃]p if and only if w̃ = Dp̃(ψ
−1 ◦ φ)(ṽ),

where p̃ = φ−1(p).
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Tangent spaces and Tangent bundles.

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let ϕ and ψ be

smooth charts on a smooth manifoldM defined on the same domain U . Let (x1, . . . , xn)

be the coordinates induced by ϕ and (z1, . . . , zn) the coordinates induced by ψ. If

the first coordinate functions x1 and z1 agree (x1 = z1 on U), this does not imply
∂
∂x1

∣∣
p

= ∂
∂z1

∣∣
p

for p ∈ U .

Work out a simple example of this fact e.g. on M = R2 by considering on the one

hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given

by u = x, v = x+ y.

This shows that ∂
∂xi

∣∣
p
depends on the whole system (x1, . . . , xn), not only on xi.

Solution. The two coordinate charts are related by{
u = x

v = x+ y

{
x = u

y = v − u.

By the chain rule we have

∂

∂u
=
∂x

∂u
· ∂
∂x

+
∂y

∂u
· ∂
∂y

=
∂

∂x
− ∂

∂y
.

We consider for example the function f(x, y) = xy on R2. The coordinate derivatives

of f with respect to two different charts are

∂

∂x
f = y

∂

∂u
f = y − x 6= ∂

∂x
f

Thus the coordinate vectors depends on the whole system.

We consider for example a linear function f(x, y) = ax+ by on R2. The coordinate

derivatives of f with respect to two different charts are

∂

∂x
f = a

∂

∂u
f = a− b 6= ∂

∂x
f

Thus the coordinate vectors depends on the whole system. �

Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional vector

space, endowed with the natural smooth structure given by picking an isomorphism

Rn → V (via the Smooth Charts Lemma)

(a) Fix p ∈ V . To every v ∈ V we associate the curve passing through p

γv : R→ V : t 7→ p+ t v

Show that the map Φp : V → TpV : v 7→ γ′v(0) is an isomorphism of vector

spaces.

Solution. To prove that the map Φp : V → TpV is an isomorphism, we fix a

linear isomorphism φ : Rn → V and use it as a local parametrization of V .

Our plan is to take profit from the fact that the linear map

Rn → TpV

ṽ 7→ [φ, ṽ]p
2
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is an isomorphism. For any vector v ∈ V , the tangent vector Φp(v) ∈ TpV is

the derivation that maps each smooth function h ∈ C∞(V ) to the number

Φp(v)(h) = γ′v(0)(h)

=
∂

∂t

∣∣∣∣
t=0

h(γv(t))

=
∂

∂t

∣∣∣∣
t=0

h(p+ tv)

=
∂

∂t

∣∣∣∣
t=0

h(φ(p̃+ t φ(ṽ)) setting p̃ = φ−1(p) and ṽ := φ−1(v)

=
∂

∂t

∣∣∣∣
t=0

(h ◦ φ)(p̃+ t ṽ) since φ is linear

= Dp̃ṽ(h ◦ φ)

= (Dp̃φ(Dp̃ṽ))(h)

= [φ, ṽ]p(h)

= [φ, φ−1(v)]p(h)

This computation shows that Φp(v) = [φ, φ−1(v)]p for any vector v ∈ V . This

means that Φp is the composite of the isomorphisms φ−1 and ṽ 7→ [φ, ṽ]P . We

conclude that Φp is an isomorphism as well. �

(b) Let f : V → W be a linear map between vector spaces V,W . Consider the

differential Dpf : TpV → Tf(p)W at any point p ∈ V . Identifying TpV ∼= V

and Tf(p)W ∼= W via the isomorphisms Φp, Φf(p), show that Dpf is identified

with f . That is, show that the following diagram commutes:

TpV
Dpf

// Tf(p)W

V

Φp

OO

f
// W

Φf(p)

OO

Solution. To check that the diagram commutes, we take two linear isomor-

phisms φ : Rm → V and ψ : Rm →W and employ them as parametrizations.

Let us show that for any vector v ∈ V we have

[φ, φ−1(v)]p
� Dpf

// [ψ,ψ−1(f(v))]f(p)

v
_

Φp

OO

�
f

// f(v)
_

Φf(p)

OO

In the previous item we have shown that for any vector ṽ ∈ Rn we have

Φp(v) = [φ, φ−1(v)] ∈ TpV , and in the same way we see that Φf(p)(f(v)) =

[ψ,ψ−1(f(v))] ∈ Tf(p)W . To finish, we verify that

Dpf([φ, φ−1(v)]p) = [ψ, Dφ(p)(ψ
−1 f φ)(φ−1(v))]f(p)

= [ψ, (ψ−1 f φ)(φ−1(v))]f(p)

= [ψ,ψ−1(f(v))]f(p).

Here, we used the fact that Dφ(p)(ψ
−1 f φ) = ψ−1 f φ since the map ψ−1 f φ :

Rm → Rn is linear. �

Exercise 4.3 (Differential of the determinant function). Consider the determinant

function det : Mn(R) → R, where Mn(R) ' Rn×n is the vector space of real n × n
3
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matrices, with its natural smooth structure. We want to compute its differential

transformation DA det at any matrix A ∈ GLn(R) (i.e. at any invertible matrix),

DA det : TAMn(R)→ Tdet(A)R

(Note that we may identify TAMn(R) with Mn(R) and Tdet(A)R with R.)

(a) Verify that det is a smooth function.

Hint: Write the determinant as a sum over all n-permutations.

Solution. The determinant can be written as

det(A) =
∑
σ∈Sn

sgn(σ)
∏

0≤i<n
ai,σ(i).

Each of the terms fσ(A) := sgn(σ)
∏

0≤i<n ai,σ(i) is a monomial, hence a

smooth function. �

(b) Show that the differential of det at the identity matrix I ∈Mn(R) is

DI det(B) = tr(B).

where tr denotes the trace.

Solution. Let’s define a curve γB : R→ GL(n) : t→ I + tB, for B ∈ GL(n).

Using the identification ΦI : GL(n)→ TI(GL(n)) : B → γ′B(0) (and the usual

identification T1R ∼= R) we have

DI det(B) = DI det(γ′B(0))

= (det ◦γB)′(0)

=
d

dt

∣∣∣
t=0

(det(I + tB))

=
∑
σ∈Sn

d

dt

∣∣∣
t=0

fσ(I + tB)

Let us derivate each of the monomials fσ.

The coefficients of the matrix A = I+ tB are ai,j = δi,j + t bi,j , where δi,j is

the Kronecker delta. Note that at t = 0 all the coefficients that are not on the

diagonal vanish.If σ 6= idn, then the monomial fσ has at least two coefficients

that are not on the diagonal, hence we have d
dt

∣∣∣
t=0

(fσ(I + tB)) = 0. Thus

the only term which survives is the one corresponding to the permutation

σ = idn, and we have

DI det(B) =
d

dt

∣∣∣
t=0

fidn(I + tB)

=
d

dt

∣∣∣
t=0

∑
0≤i<n

(1 + t bi,i,)

=
d

dt

∣∣∣
t=0

(1 + t tr(B) + t2 . . . )

= trB

�

(c) Show that for arbitrary A ∈ GLn(R), B ∈Mn(R).

DA det(B) = (detA) tr(A−1B)

Hint: Write det(A+ tB) = (detA)(det(I + tA−1B)).
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Solution. Similarly, we define γB : R→ GL(n) : t→ A+ tB, for B ∈ GL(n).

With the identification ΦA : GL(n)→ TA(GL(n)) : B → γ′B(0) we have

DA det(B) = DA det(γ′B(0))

= (det ◦γB)′(0)

=
d

dt

∣∣∣
t=0

(det(A+ tB))

= det(A) lim
t→0

1 + t tr(A−1B) +O(t2))− 1

t

= det(A) tr(A−1B)

�

(d) Show that DA det is the null linear transformation if A = 0 and n ≥ 2.

Solution. It suffices to check that f ′B(t) = 0 when t = 0 for the function

fB(t) = det(A+ tB) = det(tB) = tn det(B).

Now, f ′B(t) = n tn−1 det(B), thus f ′B(0) = 0 as required. �

Exercise 4.4 (Tangent Bundles). (a) Show that T(p1,p2)M1 × M2
∼= Tp1M1 ⊕

Tp2M2. Show that in fact this extends to the tangent bundles, i.e. there

is a diffeomorphism T (M1 ×M2) ∼= TM1 × TM2.

Solution. Let us first recall how we define the smooth structure on a tangent

bundle and the smooth structure of a product manifold. After that, we will

combine these concepts to study the tangent bundle of a product manifold.

Smooth structure of a tangent bundle. The smooth structure on

the tangent bundle TN of a smooth n-manifold N is defined by the local

parametrizations of the form

φ̂ : V × Rn → π−1
TN (U)

(x, v) 7→
(
φ(x), Dxφ(Dxv)

) ,
where (V,U, φ) is a local parametrization of N and πTN : TN → N is the

canonic projection (p, w) 7→ p.

Smooth structure of a product manifold. The smooth structure on a

product manifold
∏
iMi is defined by the local parametrizations of the form

φ :
∏
i Vi →

∏
i Ui

x = (xi)i 7→ p =
(
φi(xi)

)
i

,

where (Vi, Ui, φi) is a local parametrization of Mi for each i.

Tangent bundle of a product manifold. We consider the tangent

bundle of a product manifold M =
∏
i∈IMi. For each i ∈ I, we define the i-th

component of a tangent vector z ∈ TpM as the vector zi = Dpπ
M
i (v) ∈ TpiMi,

where πMi : M → Mi the i-th projection p = (pj)j 7→ pi. We claim that for

each point p ∈M , the linear map

fp : TpM →
∏
i TpiMi

z 7→ (zi)i∈I = (Dpπ
M
i (z))i∈I

is an isomorphism. Moreover, we claim that the map

f : TM →
∏
i TMi(

p, z) 7→
(
pi, Dpπ

M
i (z)

)
i∈I

is a diffeomorphism.

Let us prove the second claim first. To do so, we examine a local expres-

sion of f constructed as follows. For each i ∈ I, take a local parametriza-

tion (Vi, Ui, φi) of Mi. From these we construct, as stated above, a local
5
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parametrization (
∏
i Vi,

∏
i Ui, φ) of M , which is characterized by the commu-

tative diagram ∏
j Vj

φ
//

πV
i

��

∏
j Uj

πU
i

��

Vi
φi

// Ui

where πUi :
∏
j Uj → Ui and πVi :

∏
j Vj → Vi are the i-th projections. From

this parametrization of M we obtain the parametrization of TM

φ̂ :
∏
i Vi ×

∏
iRni → π−1

TM (
∏
i Ui)

(x, v) 7→
(
p = φ(x) = (φi(xi))i, z = Dxφ(Dxv)

)
.

On the other hand, each tangent bundle TMi has a local parametrization

φ̂i : Vi × Rni → π−1
i (Ui)

(xi, vi) 7→ (φi(xi), Dxiφi(vi))
,

and putting these together, we form a parametrization of
∏
i TMi

ψ :
∏
i(Vi × Rni) →

∏
i π
−1
i (Ui)

(xi, vi)i 7→ (φi(xi), Dxiφi(vi))i∈I .

We claim that the local expression of f with respect to the charts φ̂, ψ is

the map

f̃ :
∏
i Vi ×

∏
iRni →

∏
i(Vi × Rni)

(x, v) 7→ (xi, vi)i∈I
.

Indeed, applying f to a point

φ̂(x, v) =
(
φ(x)︸︷︷︸
p

= (φi(xi))i, Dxφ(Dxv)︸ ︷︷ ︸
z

)
we get

f
(
φ̂(x, v)

)
= f(p, z) =

(
φi(xi), Dpπ

M
i (z)︸ ︷︷ ︸
zi

)
i∈I ,

where

zi = Dpπ
M
i (z)

= Dpπ
U
i (z)

= Dpπ
U
i (Dxφ(Dxv))

= Dx(πUi ◦ φ)(Dxv)

= Dx(φi ◦ πVi )(Dxv)

= Dxiφi(Dxπ
V
i (Dxv))

= Dxiφi(Dxivi),

and we obtain the same result by computing

ψ
(
f̃(x, v)

)
= ψ((xi, vi)i) = (φi(xi), Dxiφi(vi))i∈I .

(To compute zi we used the following facts. First, the map πUi is the restriction

of πMi to the open set
∏
i Ui ⊆

∏
iMi, thus it has the same differential.

Second, the identity πUi ◦ φ = φi ◦ πVi , which has been expressed above by

a commutative diagram. Third, the identity Dxπ
V
i (Dxv) = Dxivi, valid for

every vector v ∈
∏
iRni , which can be verified directly by applying both

derivations to a function h ∈ C∞(Vi).)
6
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This shows that we have a commutative diagram

A := π−1
TM (

∏
i Ui)

f |BA
//
∏
i π
−1
TMi

(Ui) =: B

∏
i Vi ×

∏
iRni

f̃

//

φ̂

OO

∏
i(Vi × Rni)

ψ

OO
,

which means that f̃ is the local expression of f w.r.t. the charts φ̃, ψ. Since f̃

is a diffeomorphism (and so are the local parametrizations φ̂, ψ), we conclude

that f |BA is a diffeomorphism. This implies that f is a local diffeomorphism,

since we can do the same reasoning for each parametrization φ̂ of TM .

To show that f is a diffeomorphism, we need just show that f is bijec-

tive. To see this, consider the projection map η :
∏
i TMi → M that sends

(pi, zi)i 7→ (pi)i. Note that η ◦ f = πTM . This means that for each point

p ∈M , the function f maps the fiber

π−1
TM (p) = {p} × TpM

to the fiber

η−1(p) =
∏
i

({pi} × TpiM) .

We may then consider the restriction

fp := f |η
−1(p)

π−1
TM (p)

: {p} × TpM →
∏
i ({pi} × TpiM)

(p, z) 7→ (pi, zi = Dpπ
M
i (z))i∈I

which is essentially the same thing as the linear map

fp : TpM →
∏
i TpiMi

z 7→ (zi)i∈I = (Dpπ
M
i (z))i∈I

,

since the point p is fixed. To show that f is bijective, it suffices to show that

fp is bijective for each point p ∈ M . An indeed, for each point p ∈ M , we

can deduce that fp is bijective from the local expression of f that we already

have. Indeed, suppose we have parametrizations (Vi, Ui, φi) as above, such

that p ∈
∏
i Ui. Then the set A = π−1

TM (
∏
i Ui) contains the fiber π−1

TM (p), and

the set B = π−1
TMi

(Ui) = η−1(
∏
i Ui) contains the fiber η−1(p), and the fact

that f |BA is bijective implies that fp is bijective. This finishes the proof that

the map f is bijective, and therefore it is a diffeomorphism.

Finally, the fact that fp is bijective also implies that the linear map fp :

TpM →
∏
i TpiMi is an isomorphism, which is the other claim that we had to

prove. �

(b) Show that TS1 is diffeomorphic to S1 × R.

Solution. Note that the 1-sphere S1 (i.e. the circle) is diffeomorphic to the

1-torus T1. Therefore, to solve the exercise, we may prove the following, more

general fact. Consider the n-torus Tn = Rn/Zn, and let π : Rn → Tn be the

quotient map x 7→ [x]. We claim that the map f : Tn × Rn → TTn given by

f([x], v) =
(
[x], Dxπ(Dxv)

)
is a diffeomorphism.

To prove this, let us first recall how we define the smooth structure on the

torus Tn. (This is a problem of Series 6, so we will not give all the details.)

We say that an open set U ⊆ Rn is nice if π is injective on U . Since the

quotient map π is open, it follows that the map φU := π|π(U)
U : U → π(U) is

a local parametrization of Tn. These parametrizations φU (for U ⊆ Rn nice)

constitute an inverse atlas on Tn (exercise).
7
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For each nice open set U ⊆ Rn we also get a local parametrization of TTn

φ̂U : U × Rn → π−1
TTn(π(U))

(x, v) 7→ ([x]), DxφU︸ ︷︷ ︸
=Dxπ

(Dxv))

(where πTTn : TTn → Tn is the projection), and a local parametrization of

Tn × Rn
ψU : U × Rn → π(U)× Rn

(x, v) 7→ ([x], v)
.

The local expression of f with respect to the parametrizations ψU , φU is

the identity map idU×Rn , since for (x, v) ∈ U × Rn we have

f(ψU (x, v)) = f([x], v) = f([x], Dxπ(Dxv)) = φU (x, v).

From this we conclude that f is a diffeomorphism by reasoning as in the first

part of the exercise. �

Immersions and smooth Embeddings.

Exercise 4.5. Consider the map

f : R→ R2 : t 7→ (2 + tanh t) · (cos t, sin t).

Show that f is an injective immersion. Is it a smooth embedding?

Solution. First notice that f is an immersion since f ′(t) 6= 0 for every t ∈ R. To see

this observe that

f∗
∣∣
t
(
∂

∂t

∣∣∣∣
t

) =
∑

0≤j<2

∂

∂t

∣∣∣∣
t

(xj ◦ f)
∂

∂xj

∣∣∣∣
f(t)

= f ′0(t)
∂

∂x0

∣∣∣∣
f(t)

+ f ′1(t)
∂

∂x1

∣∣∣∣
f(t)

Hence if f ′(t) 6= 0 then we have Ker f∗
∣∣
t

= {0} which is equivalent to f∗
∣∣
t

injective

for every t ∈ R. Thus it suffices to compute

f ′0(t) =

(
1

cosh2 t

)
cos t− (2 + tanh t) sin t

and

f ′1(t) =

(
1

cosh2 t

)
sin t− (2 + tanh t) cos t

To see that f ′(t) 6= 0 notice that

‖f ′(t)‖2 =

(
1

cosh2 t

)2

+ (2 + tanh t)2 > 0

where ‖ · ‖ denotes the euclidean norm. This proves that f is an immersion. Further-

more the function f is an injection since the function r(t) = ‖f(t)‖ = 2 + tanh t is

strictly increasing.

Note that f is an injective immersion. Let us prove that it is a smooth embedding.

Consider the open set U = {x ∈ R2 : 1 < ‖x‖ < 3}. We will show that f |U : R → U

is a proper map (hence a closed map; see e.g. Thm. 4.95 of Lee’s book on topological

manifolds). It follows that f is an embedding, since its the composite f = ιU ◦ f |U
of a closed embedding f |U and the inclusion map ιU : U → M , which is an open

embedding.

To see that f |U is proper we let K ⊆ U be a compact set and verify that f−1(K) ⊆
R is compact as well. Since K is closed (because it is a compact subset of a Hausdorff

space) and f is continuous, the preimage f−1(K) is closed. Finally, we have to check

that f−1(K) is bounded. Let a (resp b) be the minimum (resp. maximum) norm of

a point x ∈ X. Note that [a, b] ⊆ (1, 3). It follows that f−1(K) ⊆ [a′, b′], where a′, b′

are the preimages of a, b by the monotonic map t 7→ 2 + tanh t. �
8
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Exercise 4.6. Consider the following subsets of R2. Which is an embedded subman-

ifold ? Which is the image of an immersion ?

(a) The “cross” S := {(x, y) ∈ R2 | xy = 0}.
Solution. The cross S is not an embedded submanifold, because it is the union

of the lines y = 0 and x = 0, and is therefore not locally Euclidean at the

origin (exercise of series 1).

On the other hand, S is the disjoint union of two embedded submanifolds:

S0 = the horizontal axis, and S1 = the vertical axis minus the origin. Let M

be the 1-manifold obtained as disjoint union of S0 and S1. The inclusion map

of M into R2 is an injective immersion and has S as image. �

(b) The “corner” C := {(x, y) ∈ R2 | xy = 0, x ≥ 0, y ≥ 0}
Solution. We will show that C is not even an immersed submanifold of R2,

so in particular it cannot be an embedded submanifold.

We proceed by contradiction. Suppose that C is an immersed submanifold,

i.e. it has a topology τ and smooth structure such that the canonical inclusion

ι : C ↪→ R2 is an immersion. Let (U,ϕ) be a smooth chart s.t. (0, 0) ∈ U ,

ϕ(0, 0) = 0 where U ⊂ (C, τ) is open 1. By making the image ϕ(U) smaller

if necessary we can suppose that it is an open interval containing 0, ϕ(U) =

J ⊂ R.

Since ι is an immersion, then

f := ι ◦ ϕ−1 : J → R2

is a smooth map with non-zero derivatives everywhere. Here we emphasize

that on J and R2 we have the standard Euclidean topology and smooth struc-

ture. In particular, we find that f ′(0) 6= (0, 0). Hence either f ′1(0) 6= 0 or

f ′2(0) 6= 0. If f ′1(0) 6= 0 then for any neighborhood of 0 ∈ J , we can find

points t1, t2 ∈ J s.t. f1(t1) < 0 and f1(t2) > 0. It contradict the fact that

f1 ≥ 0. Similarly we arrive at a contradiction if f ′2(0) 6= 0. �

Exercise 4.7. Let N be a embedded n-submanifold of some m-manifold M . Show

that there exists an open set U ⊆M that contains N as a closed subset.

Solution. Consider a family of charts ϕi : Wi → Vi that cover N and are slice charts

for N , meaning that ϕi(x) ∈ Rn × {0} iff x ∈ N , or equivalently, that N ∩Wi =

ϕ−1
i (Rn×{0}). Therefore N ∩Wi is a closed subset of Wi for all i. We conclude that

N is closed in W =
⋃
iWi, which is an open subset of M . �

Exercise 4.8 (To hand in). Let f : M → N be an injective immersion of smooth

manifolds. Show that there exists a closed embedding M → N × R.

Hint: Recall that there exists a proper map g :M → R (Exercise 3.2)

1Note that in the case of an embedded manifold we could assume that U = V ∩C for some V ⊂ R2

open, but here a-priori we do not know the topology τ .
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