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Notes:

Local parametrizations. For some problems it is convenient to work with local
parametrizations rather than charts. Recall that a local parametrization (or in-
verse chart) of a topological n-manifold M is a triple (V,U, ¢), where V' C R™ and
U C M are open sets, and ¢ : V — U is a homeomorphism. An inverse atlas on
M is a set A of local parametrizations of N whose images cover M. An inverse atlas
A is smooth if the transition map ! o ¢ between any two local parametriza-
tions (V,U, ¢), (V',U",;¢) € A is smooth. A smooth inverse atlas defines a smooth
structure.

Notation for tangent vectors. In some solutions we will use the following
notation for tangent vectors. Let p be a point of a smooth n-manifold M, let (V,U, ¢)
be a local parametrization of M such that p € U, and let p = ¢~ !(p). Then for each
vector v € R™, we denote

(6,7l i= Dpo(Dy) € T, M.
Warning: Be careful if you read the notes of last year: this tangent vector [y, 7],

corresponds to the vector [p, ¢~ 1, 0] of the notes.

More explicitly, this tangent vector [¢,v], € T, M is the derivation that maps each
smooth function h € C>°(M) to the number

(6, v]p(h) = (Dpe(D50)) (h)
= (Dpv)(h o §)
= Dj(h o ¢)(v)
0

= 51 (ho®)F+17).

Fixed the point p € M and the local parametrization ¢, the map
dp: R* — T,M
:J = [¢7 mp
is an isomorphism, since it is the composite of the isomorphism

R" — T3R"

v»—)Dﬁv

(seen in Lecture 3) with the isomorphism D¢ : T;R™ — T,M (whose inverse is
D,$~1). In conclusion, each tangent vector v € T,M can be written in the form
v = [¢, v], for some unique vector v € R™.

Differential of a map. The differential of a smooth map f: M — N at a point
p can be expressed by the formula

Dpf (¢, 7)) = [¢, Dp(¥™" 0 f 0 0)(0)]4p);

where
¢ is a local parametrization of M that covers the point p and
¥ is a local parametrization of N that covers the point f(p).

Change of parametrizations. In particular, putting f = idys, we see that if
both ¢ and 1) are parametrizations of M that cover the same point p € M, then

[0, 0], = [,w], ifandonlyif w= Dﬁ(w_l 0 ¢)(v),
where p = ¢~ 1(p).
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Tangent spaces and Tangent bundles.

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let ¢ and v be
smooth charts on a smooth manifold M defined on the same domain U. Let (z!,..., 2")
be the coordinates induced by ¢ and (z!,...,2") the coordinates induced by 1. If
the first coordinate functions z' and z!' agree (z' = 2! on U), this does not imply
%p: %‘pforpGU.

Work out a simple example of this fact e.g. on M = R? by considering on the one
hand the Cartesian coordinates (x,y) and on the other hand the chart (u,v) given
byu=xz,v=x+y.

This shows that 381-
X

» depends on the whole system (z',...,x™), not only on z*.

Solution. The two coordinate charts are related by
u=ux T =1u
vV=x+Y Yy=v-—u.

o dxr 0 oy a9 D

ou_Ou 9z ou Dy 0z 0y

By the chain rule we have

We consider for example the function f(z,y) = xy on R%. The coordinate derivatives
of f with respect to two different charts are

9,
oz’ Y
0 0
af =y—xz# %f
Thus the coordinate vectors depends on the whole system.

We consider for example a linear function f(z,y) = az +by on R?. The coordinate
derivatives of f with respect to two different charts are

9
Ox
0 0

aul =707 5/

=a

Thus the coordinate vectors depends on the whole system. O

Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional vector
space, endowed with the natural smooth structure given by picking an isomorphism
R™ — V (via the Smooth Charts Lemma)

(a) Fix p € V. To every v € V we associate the curve passing through p
Y  R=>V:it—=p+to

Show that the map ®, : V. — T,V : v — ~,(0) is an isomorphism of vector
spaces.

Solution. To prove that the map ®, : V' — T,V is an isomorphism, we fix a
linear isomorphism ¢ : R® — V and use it as a local parametrization of V.
Our plan is to take profit from the fact that the linear map

R" — T,V

:J = [(Z)J mp
2
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is an isomorphism. For any vector v € V, the tangent vector ®,(v) € T,V is
the derivation that maps each smooth function h € C*>°(V') to the number

©p(v)(h) = 7,(0) ()

0
~ ot o h(yw(t))

= — t
5. h(p + tv)

= 5| M +t6(D)) setting p=¢ " (p) and ¥ := 67 (v)
t=0

= gt » (ho¢)(p+tv) since ¢ is linear

= Dzv(ho ¢)

= (Dpo(Dyo)) (h)

= [¢,0]p(h)

= [0,¢7 (V)]p(h)

This computation shows that ®,(v) = [¢, ¢~1(v)], for any vector v € V. This
means that @, is the composite of the isomorphisms ¢t and ¥ — [¢,0]p. We
conclude that ®, is an isomorphism as well. O

Let f:V — W be a linear map between vector spaces V,W. Consider the
differential D, f : T,V — Ty,)W at any point p € V. Identifying T,V =V
and Ty, W = W via the isomorphisms ®;,, @ (), show that D, [ is identified
with f. That is, show that the following diagram commutes:

Dy f
Vv P TrpmW

‘I’pT Tq’f(p)

V w
f

Solution. To check that the diagram commutes, we take two linear isomor-
phisms ¢ : R™ — V and ¥ : R™ — W and employ them as parametrizations.
Let us show that for any vector v € V' we have

16,67 (0)]p ———L— [, 61 (F ) y)

‘I’p/l\ chf(l))

v } f@)

In the previous item we have shown that for any vector v € R™ we have
®p(v) = [¢,¢7(v)] € T,V, and in the same way we see that @, (f(v)) =
[, (f(v))] € Ty W. To finish, we verify that

Dy f([¢, 0~ (V)]p) = [, Dy (@1 f ) (& ()] )
= [, @7 f ) (o ()] ()
= [, (f(0))] (-

Here, we used the fact that Dy, (Y=t f¢) =9t fpsince themap =L f¢:
R™ — R"™ is linear. O

Exercise 4.3 (Differential of the determinant function). Consider the determinant
function det : M, (R) — R, where M, (R) ~ R™™ is the vector space of real n x n

3
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matrices, with its natural smooth structure. We want to compute its differential
transformation D4 det at any matrix A € GL,(R) (i.e. at any invertible matrix),

DA det : TAMn<R) — Tdet(A)R

(Note that we may identify T4 My (R) with M, (R) and Tyeq4)R with R.)

(a)

Verify that det is a smooth function.

Hint: Write the determinant as a sum over all n-permutations.

Solution. The determinant can be written as

det(A) = Z sgn(o) H Qi (i)

o€Sn 0<i<n

Each of the terms f,(A) := sgn(o) [[p<;<p, @io(;) is @ monomial, hence a
smooth function. O

Show that the differential of det at the identity matrix I € M, (R) is
Dy det(B) = tr(B).

where tr denotes the trace.

Solution. Let’s define a curve yg : R = GL(n) : t = I +tB, for B € GL(n).
Using the identification ®; : GL(n) — T7(GL(n)) : B — «v5(0) (and the usual
identification T1R = R) we have

Drdet(B) = Dy det(v(0))
= (det 0v5)'(0)

d

- %LO (det(I +tB))
d

=2 &‘t:OfU(I+tB)

gESy

Let us derivate each of the monomials f,.

The coefficients of the matrix A = I +tB are a; ; = 0; j +tb; ;, where J; ; is
the Kronecker delta. Note that at ¢ = 0 all the coefficients that are not on the
diagonal vanish.If o # id,,, then the monomial f, has at least two coefficients

that are not on the diagonal, hence we have % . (fo(I +tB)) = 0. Thus
t=
the only term which survives is the one corresponding to the permutation

o =id,, and we have

d
Dydet(B) = prin fia, (I +1B)

d
= — 1 tbii
il Do (Utbig)

=0 0<i<n

d 2
= 2| QB+
=trB

(c) Show that for arbitrary A € GL,(R), B € M, (R).

Dadet(B) = (det A) tr(A™'B)

Hint: Write det(A + tB) = (det A)(det(I +tA~!B)).
4
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Solution. Similarly, we define yp: R — GL(n) : t - A+ tB, for B € GL(n).
With the identification ®4 : GL(n) — Ta(GL(n)) : B — v3(0) we have
Dadet(B) = Dadet(v5(0))

= (det ov5)'(0)

DI (det(A + tB))

- dt lt=0
1 2\
— det(A) hml—l—ttr(A B)+0(t%)) — 1
t—0 t

= det(A) tr(A7!B)

g
(d) Show that D 4 det is the null linear transformation if A =0 and n > 2.
Solution. It suffices to check that fj(¢) = 0 when ¢ = 0 for the function
fB(t) = det(A + tB) = det(tB) = t" det(B).
Now, f(t) = nt"1det(B), thus f5(0) = 0 as required. O

Exercise 4.4 (Tangent Bundles). (a) Show that T{,, ,, M1 x My = T, My @
T,,M;. Show that in fact this extends to the tangent bundles, i.e. there
is a diffeomorphism T'(M; x M) = T My x T Ms.

Solution. Let us first recall how we define the smooth structure on a tangent
bundle and the smooth structure of a product manifold. After that, we will
combine these concepts to study the tangent bundle of a product manifold.

Smooth structure of a tangent bundle. The smooth structure on
the tangent bundle T'N of a smooth n-manifold N is defined by the local
parametrizations of the form

o: VxR' - o (U)
(-rav) = (¢(.’E),D$¢(Dz’l)))7

where (V,U, ¢) is a local parametrization of N and 7nry : TN — N is the
canonic projection (p,w) — p.

Smooth structure of a product manifold. The smooth structure on a
product manifold [], M; is defined by the local parametrizations of the form

o: ILVi = IL U
= ()i — p=(¢i(z)),’

where (V;, U;, ¢;) is a local parametrization of M; for each i.

Tangent bundle of a product manifold. We consider the tangent
bundle of a product manifold M = [[,.; M;. For each i € I, we define the i-th
component of a tangent vector 2z € T, M as the vector z; = DM (v) € T, M;,
where 7TZM : M — M; the i-th projection p = (p;); — p;. We claim that for
each point p € M, the linear map

fp: T,M — I, Ty M;
z = (z)ier = (Dpm(2))ier
is an isomorphism. Moreover, we claim that the map

(p2) = (piva”zM(Z))z’eI

is a diffeomorphism.
Let us prove the second claim first. To do so, we examine a local expres-
sion of f constructed as follows. For each i € I, take a local parametriza-

tion (V;,U;, ¢;) of M;. From these we construct, as stated above, a local
5
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parametrization (I, Vi, [[; Ui, ¢) of M, which is characterized by the commu-
tative diagram

¢
Hj‘G;)HjUj

14 U

Vi— — U

where 7V : [I;U; = Ui and Y [I; V; — Vi are the i-th projections. From
this parametrization of M we obtain the parametrization of T'M
¢: [LVixILR™ — mrar ([T Us)

(z,v) = (p= (@) = (¢i(2i))is 2 = Dud(Dyv)).

On the other hand, each tangent bundle T'M; has a local parametrization
bi: VixRM m H(U;)
(zi,vi) = (9i(xi), Da; 9i(vi))

and putting these together, we form a parametrization of [[, T'M;

Yo [L(VixR™Y) — I Wi_l(Ui)
(w4, v = (@i(w), Doy i (v5) )ier-

We claim that the local expression of f with respect to the charts 5, P is
the map

f [LVixILR"™ — [L(Vi xR"™)
(z,v) = (T, v)ier
Indeed, applying f to a point

$(x,v) = (@ = (¢i(%1))i» Ded(Dav) )

p z
we get

7 (8. 0)) = f(p,2) = (@i(2e), Dy (2)) e
where

Zi = DPWZM(Z)
= pWiU(Z)
= Dyl (D2 (D))

= Dy(m © §)(Dyv)

= Dy (¢; o) )(Dyv)
= Dzi@'(Dm”zV(Dz”))
= Dy, ¢i(Dz,vi),

and we obtain the same result by computing
(0 (f(%v)) = Y((zi,v:)i) = (¢i(2i), Do, (i) )ier-

(To compute z; we used the following facts. First, the map 7TZ-U is the restriction
of M to the open set [[;U; C [[; M;, thus it has the same differential.
Second, the identity 7riU op = ¢; 0 7er , which has been expressed above by
a commutative diagram. Third, the identity DJCWZV (Dyv) = Dg,v;, valid for
every vector v € [[,R™, which can be verified directly by applying both
derivations to a function h € C*(V}).)

6



Introduction to Differentiable Manifolds Solutions Series 4

This shows that we have a commutative diagram

il

A= 70, (L U) — Tl gy, (Us) =: B

5| [:

ILVi x [ R" ——— [[;(Vi x R™)
!

which means that fis the local expression of f w.r.t. the charts q~5, 1. Since ]7
is a diffeomorphism (and so are the local parametrizations gg, 1), we conclude
that f |Jj is a diffeomorphism. This implies that f is a local diffeomorphism,
since we can do the same reasoning for each parametrization 5 of TM.

To show that f is a diffeomorphism, we need just show that f is bijec-
tive. To see this, consider the projection map n : [[,TM; — M that sends
(pi,zi)i — (pi)i- Note that n o f = mpp. This means that for each point
p € M, the function f maps the fiber

T (p) = {p} x T,M
to the fiber

n' () = [[ Upi} x T, M).

)

We may then consider the restriction

P -1
Fo = A0 iy x TM - = T1 (pi} x Ty M)
T (P) M
(p,Z) = (pzazl :Dpﬂ-i (Z))’LEI
which is essentially the same thing as the linear map
fp: Tp,M — T, T, M;
z = (z)ier = (Dpr}(2))ier
since the point p is fixed. To show that f is bijective, it suffices to show that
fp is bijective for each point p € M. An indeed, for each point p € M, we
can deduce that f, is bijective from the local expression of f that we already
have. Indeed, suppose we have parametrizations (V;, U;, ¢;) as above, such
that p € [[; Ui- Then the set A = 753, (I]; U;) contains the fiber 771, (p), and
the set B = WEZI\/[Z(Uz) =YL %) contains the fiber n71(p), and the fact
that f|§ is bijective implies that f, is bijective. This finishes the proof that
the map f is bijective, and therefore it is a diffeomorphism.
Finally, the fact that f, is bijective also implies that the linear map f, :

T,M — 1], Tp,M; is an isomorphism, which is the other claim that we had to
prove. O

Show that 7'S' is diffeomorphic to S! x R.

Solution. Note that the 1-sphere S! (i.e. the circle) is diffeomorphic to the
1-torus T'. Therefore, to solve the exercise, we may prove the following, more
general fact. Consider the n-torus T = R"/Z", and let 7 : R"™ — T™ be the
quotient map z — [x]. We claim that the map f: T x R™ — T'T" given by

f(x],v) = ([w]aDmW(Dwv))

is a diffeomorphism.

To prove this, let us first recall how we define the smooth structure on the
torus T". (This is a problem of Series 6, so we will not give all the details.)
We say that an open set U C R" is nice if 7 is injective on U. Since the
quotient map 7 is open, it follows that the map ¢y := 7T|E(U) U = 7(U) is
a local parametrization of T"™. These parametrizations ¢y (for U C R nice)
constitute an inverse atlas on T" (exercise).

7
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For each nice open set U C R"™ we also get a local parametrization of TT"
qb/E: UxR" — W;%n(W(U))
(z,0) = ([z]), Doy (D))
=D,7

(where 7ppn @ TT™ — T™ is the projection), and a local parametrization of
T" x R™
Yp: UxR" — 7(U)xR"
(20) = (o)
The local expression of f with respect to the parametrizations Yy, ¢y is
the identity map idy«gn, since for (z,v) € U x R™ we have

fWu(z,v)) = f([z],v) = f([z], Dam(Dxv)) = ¢ (2, v).

From this we conclude that f is a diffeomorphism by reasoning as in the first
part of the exercise. O

Immersions and smooth Embeddings.
Exercise 4.5. Consider the map
f:R—R?*:t— (2+tanht) - (cost,sint).

Show that f is an injective immersion. Is it a smooth embedding?

Solution. First notice that f is an immersion since f/(t) # 0 for every ¢t € R. To see
this observe that

0 0 ; 0 0 0
Flg ) =2 5| @ of g =f) 55 +f#) 57
Pl (52, 0t 07| 5s) 02 | ;) i
Hence if f'(t) # 0 then we have Ker f*’t = {0} which is equivalent to f*’t injective
for every t € R. Thus it suffices to compute
1
o) = <2> cost — (24 tanht)sint
cosh”t
and
1
fit) = <2> sint — (2 + tanht) cost
cosh”t
To see that f/(t) # 0 notice that
2
1 @) = < 5 ) + (2 +tanht)® > 0
cosh”t
where || - || denotes the euclidean norm. This proves that f is an immersion. Further-
more the function f is an injection since the function r(t) = || f(¢)|| = 2 + tanht is

strictly increasing.

Note that f is an injective immersion. Let us prove that it is a smooth embedding.
Consider the open set U = {x € R? : 1 < ||z|| < 3}. We will show that f|Y : R — U
is a proper map (hence a closed map; see e.g. Thm. 4.95 of Lee’s book on topological
manifolds). It follows that f is an embedding, since its the composite f = ¢y o f|V
of a closed embedding f|Y and the inclusion map vy : U — M, which is an open
embedding.

To see that f|V is proper we let K C U be a compact set and verify that f~1(K) C
R is compact as well. Since K is closed (because it is a compact subset of a Hausdorff
space) and f is continuous, the preimage f~1(K) is closed. Finally, we have to check
that f~!(K) is bounded. Let a (resp b) be the minimum (resp. maximum) norm of
a point € X. Note that [a,b] C (1,3). It follows that f~(K) C [a/,V'], where o, ¥/
are the preimages of a, b by the monotonic map ¢ — 2 + tanh . O

8
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Exercise 4.6. Consider the following subsets of R2. Which is an embedded subman-
ifold 7 Which is the image of an immersion ?

(a)

The “cross” S := {(x,y) € R? | zy = 0}.

Solution. The cross S is not an embedded submanifold, because it is the union
of the lines y = 0 and z = 0, and is therefore not locally Euclidean at the
origin (exercise of series 1).

On the other hand, S is the disjoint union of two embedded submanifolds:
So = the horizontal axis, and 57 = the vertical axis minus the origin. Let M
be the 1-manifold obtained as disjoint union of Sy and S;. The inclusion map
of M into R? is an injective immersion and has S as image. g
The “corner” C := {(x,y) € R? | zy = 0,2 > 0,y > 0}

Solution. We will show that C is not even an immersed submanifold of R?
so in particular it cannot be an embedded submanifold.

We proceed by contradiction. Suppose that C' is an immersed submanifold,
i.e. it has a topology 7 and smooth structure such that the canonical inclusion
t: C — R? is an immersion. Let (U, ¢) be a smooth chart s.t. (0,0) € U,
©(0,0) = 0 where U C (C, ) is open H By making the image ¢(U) smaller
if necessary we can suppose that it is an open interval containing 0, ¢(U) =
J CR.

Since ¢ is an immersion, then
fi=1opt:J = R?

is a smooth map with non-zero derivatives everywhere. Here we emphasize
that on J and R? we have the standard Euclidean topology and smooth struc-
ture. In particular, we find that f’(0) # (0,0). Hence either f{(0) # 0 or
15(0) # 0. If f{(0) # O then for any neighborhood of 0 € J, we can find
points t1,ty € J s.t. fi(t1) < 0 and fi(t2) > 0. It contradict the fact that
f1 > 0. Similarly we arrive at a contradiction if f5(0) # 0. O

Exercise 4.7. Let N be a embedded n-submanifold of some m-manifold M. Show
that there exists an open set U C M that contains N as a closed subset.

Solution. Consider a family of charts ¢; : W; — V; that cover N and are slice charts
for N, meaning that ¢;(z) € R™ x {0} iff z € N, or equivalently, that N N W; =
@; 1(R™ x {0}). Therefore NN W is a closed subset of W; for all i. We conclude that
N is closed in W = |J; W;, which is an open subset of M. g

Exercise 4.8 (To hand in). Let f : M — N be an injective immersion of smooth
manifolds. Show that there exists a closed embedding M — N x R.
Hint: Recall that there exists a proper map g : M — R (Exercise 3.2)

INote that in the case of an embedded manifold we could assume that U = VN C for some V C R?
open, but here a-priori we do not know the topology .
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