
Exercise Session 5: Transport Layer -
Solutions

COM-208: Computer Networks

In most of the problems, you will be asked to complete a diagram, stating all exchanges,
events and actions taken by the transport layers of a sender and a receiver. For each
exchanged segment, indicate whether data or acknowledgment (ACK) segment, its
sequence (SEQ) or ACK number, and whether the segment was lost. Also, indicate any
timeout events and changes to the sender or receiver window.

We define the “duration of a file transfer” as the amount of time that elapses from the
moment the sender transmits the first bit of the file until the moment the receiver receives
the last bit of the file. Whenever computing the duration of a file transfer, assume that
segment headers and ACK segments have insignificant size (i.e., their transmission delay
is insignificant).

Go-Back-N in the presence of data-segment loss

End-system A is communicating with end-system B using a Go-Back-N (GBN) protocol
with window size N = 4 and valid sequence numbers ranging from 0 to 10. The network
between the two end-systems may drop segments, but it never reorders or corrupts
segments. Suppose B has received and acknowledged data segments with SEQs 0 and 1,
and it is expecting data segment with SEQ 2. Instead, it receives data segments with
SEQs 4, 5, 2, and 3 (in this order). What has happened? Which (data or ACK) segments
have been lost? How does B respond upon receiving each data segment?

Complete the diagram in Figure 1. We have already filled in some of the information:
segment 2 was lost and A timed out waiting for an ACK to segment 2.

1



seg
seg
seg
seg

seg
seg

seg
seg

seg
seg

seg

Figure 1

Now also with ACK-segment loss

End-system A communicates with end-system B using a GBN transport-layer protocol
with sender window size N = 4 and valid sequence numbers ranging from 0 to 10. The
network between them may drop segments, but it never reorders or corrupts segments.
End-system B receives data segments with the following SEQ numbers (in this order):
0, 1, 3, 4, 5, 2, 3, 4, 5. End-system A receives ACK segments with the following ACK
numbers (in this order): 1, 1, 1, 2, 3.

Complete the diagram in Figure 2. We have already filled in some of the information
to help you get started: end-system A sent data segments with SEQs 0 and 1, which
reached end-system B; ACK 0 was lost.

2



Figure 2 shows one solution to this question; there may exist other
plausible solutions.

X X
X

seg 0
seg 1
seg 2
seg 3

seg 4
seg 5

seg 2
seg 3
seg 4
seg 5
seg 6
seg 7

ACK 0

ACK 1

ACK 1

ACK 1

ACK 1

ACK 2

ACK 3

ACK 4

ACK 5

timeout seg 2

Figure 2

A more challenging scenario

End-system A communicates with end-system B using a GBN transport-layer protocol
with sender window size N = 3. The network between them may drop segments, but it
never reorders or corrupts segments. A wants to send a file to B. It splits the file into
8 data segments with SEQs from 0 to 7. In the entire duration of the file transfer, A
receives ACK segments with the following ACK numbers (in this order): 1, 1, 4, 6, 7.

Complete the diagram in Figure 3. We have already completed some of the information
to help you get started: A sends data segments with SEQs 0 and 1, which reach B. B
sends ACKs 0 and 1, but only ACK 1 reaches A.

3



seg
seg
seg

seg
seg

seg
seg
seg

seg
seg
seg

timeout seg 2

Figure 3

Thinking creatively about Go-Back-N

An end-system wants to send 4 data segments over a network that may drop segments,
but it never reorders or corrupts segments.

• In the GBN protocol, what mechanism is used by the sender to detect the loss of
data segments?

Retransmission timer.

• Are there situations where the sender has sufficient information that could be used
to detect a segment loss sooner and, thus, recover faster? How would you improve
the sender algorithm? What is the minimum amount of time needed to detect the

4



loss of a data segment? Think about the pattern of acknowledgments received by
the sender when a data segment is lost.

Yes, duplicate ACKs indicate that the data segment after the ACKed
segment was lost. These are generated when one or more segments with
sequence numbers higher than the lost segment are received.

The sender could be modified to retransmit immediately after a duplicate
acknowledgment is received, without waiting for the timer to expire. The
detection time of a loss would be reduced, in the best case, to one RTT.

• Can you identify any problem with the modified sender algorithm if the network
starts reordering segments?

Yes. If there is segment reordering in the network on the forward path,
the aforementioned approach can cause problems because the receiver
sends duplicate ACKs for every out-of-order segment received. Even if
there is no loss, the sender would incorrectly conclude that some segments
were lost and retransmit, wasting bandwidth.

• Propose a solution that makes the modified algorithm work better in the case where
the network can reorder segments.

One plausible solution is to modify the algorithm to react to triple or
quadruple duplicate ACKs, as opposed to duplicate ACKs. The network
may reorder consecutively transmitted segments, so the algorithm must
account for it by allowing some “slack time”. In other words, the algorithm
must conclude segment loss only when it has a strong indication. Such an
indication is receiving three or more duplicate ACKs, as it is less likely
that further apart transmitted segments got reordered. Note that we
cannot indefinitely increase the slack time, as there is a trade-off between
the accuracy and the latency of detecting segment loss.

5



Thinking about different transport-layer protocols

End-system A is connected to end-system B over a link that has, in each direction,
propagation delay dprop and transmission rate R. The link is reliable and does not drop,
reorder, or corrupt segments. A wants to send a file of size F to B.

• What is the minimum duration of the file transfer (regardless of the transport-layer
protocol used)? Assume that the entire file fits in a single segment.

It consists of:

• The transmission delay of the file, which is the time push all ths bits
of the file into the link: F

R .

• The propagation delay of the link, which is the time for the last bit
of the file to reach B: dprop.

In total: F
R + dprop.

• Suppose that the file-transfer application uses a Stop-and-Wait transport-layer
protocol What is the duration of the file transfer? Assume data segments of size P
and that P perfectly divides F (i.e., F

P is an integer).

The answer is the same as the one for the next question, assuming sender
window size N = 1. This is because Stop-and-Wait protocol is identical
to Go-Back-N (GBN) with N = 1.

• Suppose that the file-transfer application uses a Go-Back-N (GBN) protocol with
sender window size N . What is the duration of the file transfer? How does your
answer compare to the result you found for the Stop-and-Wait protocol? Assume
data segments of size P and that P perfectly divides F . Assume that N perfectly
divides the total number of segments F

P that A transmits during the file transfer.

A quick recap: In GBN with sender window size N , the sender can
transmit up to N segments without waiting for an ACK.

We identify two cases:

6



1. When B’s first ACK arrives at A, A is still busy transmitting the
first N segments.

In this case, A never has to wait for B’s ACKs to arrive, it keeps
transmitting segments one after the other until it has transmitted
the entire file. Hence, the duration of the file transfer is F

R + dprop,
the same as in the first question.

In more detail: A can transmit up to N unacknowleged segments.
By the time it finishes transmitting the Nth segment, it has already
received the ACK for the 1st segment, which means that A can
immediately transmit the N + 1st segment. By the time it finishes
transmitting the N + 1st segment, it has already received the ACK
for the 2nd segment, which means that A can immediately transmit
the N + 2nd segment. And so on. So, A is never “blocked” waiting
for B’s ACKs, it can keep transmitting.

This case occurs when N ·P
R ≥ P

R +2 ·dprop: The term on the left is the
amount of time it takes for A to transmit the first N segments. The
term on the right is the amount of time it takes for A to transmit
one segment, wait for it to reach B, and receive B’s ACK.

2. A finishes transmitting the first N segments before B’s first ACK
arrives at A.

In this case, the file transfer happens in “rounds”; a round begins
when A starts transmitting the first segment of a window. There are
M = F

P ·N such rounds, because A needs to send F
P segments, and it

sends N segments per round.

Figure 4 illustrates: Each round expecpt for the last one lasts P
R +

2 · dprop: the time for A to transmit the first segment in the current
round, wait for it to reach B, and receive B’s ACK for that segment.
The last round lasts only N ·P

R + dprop: the time for A to transmit
the first segment in the current round and wait for it to reach B. In
total: (M − 1) ·

(
P
R + 2 · dprop

)
+ N ·P

R + dprop.

This case occurs when N ·P
R < P

R +2 ·dprop: The opposite of the above
case.

7



seg

seg
seg

seg

seg
seg

Figure 4: A sends K = 2 ·N segments to B using GBN with window size N .

• Would you prefer a GBN or a Selective Repeat (SR) transport-layer protocol to
perform this file transfer over this specific link? Justify your answer.

Both protocols perform equally well in this case, where there is no segment
loss. The only difference is that GBN is a simpler protocol, and does not
require the sender to maintain multiple timers, one for each unACKed
segment.

Now with segment loss

An end-system wants to send 4 data segments over a network that may drop segments,
but it never reorders or corrupts segments. Compute the time it takes for the sender to
send all data segments and receive all acknowledgments in each of the following scenarios.
If there are many possible answers, identify all of them. Assume that the round trip time
between the sender and the receiver is RTT = 100 ms, the transmission delay of any
single segment is negligible, and the retransmission timer duration is TO = 400 ms.

8



• The sender uses a GBN transport-layer protocol with window size N = 4. One data
segment (from the sender to the receiver) is lost the first time it gets transmitted;
no other segment is lost.

The retransmission timer will timeout at time TO for the lost data
segment, and a retransmission will occur, which lasts another RTT . So,
∆T = TO + RTT = 500 ms.

• The sender uses a GBN transport-layer protocol with window size N = 4. An ACK
segment is lost the first time it gets transmitted; no other segment is lost.

GBN uses cumulative acknowledgments, so if the first, second or third
ACK is lost, the fourth ACK “covers” for it and no retransmission is
necessary; in each of these cases, ∆T = RTT = 100 ms.

However if the fourth ACK is lost, there will be a retransmission; so,
T = TO + RTT = 500 ms.

• The sender uses an SR transport-layer protocol with window size N = 4. A data
segment is lost the first time it gets transmitted; no other segment is lost.

The retransmission timer will timeout at time TO for the lost data
segment, and a retransmission will occur, which lasts another RTT . So,
∆T = TO + RTT = 500 ms.

• The sender uses an SR transport-layer protocol with window size N = 4. An ACK
segment is lost the first time it gets transmitted; no other segment is lost.

SR uses individual acknowledgments. The loss of the ACK will cause a
timeout and a retransmission. So, ∆T = TO + RTT = 500 ms.

9



A more challenging scenario

End-system A wants to send a file to end-system B using a transport-layer protocol that
provides reliable data delivery with pipelining and sender window N = 5. A’s transport
layer splits the file in 10 data segments with SEQs from 0 to 9.

• The first data segment from A to B is lost the first time it is transmitted, while all
other segments arrive at their destination uncorrupted and in order. Complete the
two diagrams in Figure 5 in each of the following two cases: (i) A and B use GBN,
and (ii) A and B use SR.

X

timeout
seg 0

seg 0

ACK 9
ACK 9

ACK 9
ACK 9

seg 1
seg 2
seg 3
seg 4

seg 0
seg 1
seg 2
seg 3
seg 4
seg 5
seg 6
seg 7
seg 8
seg 9

ACK 0
ACK 1

ACK 2
ACK 3

ACK 4
ACK 5

ACK 7ACK 6
ACK 9ACK 8

timeout
seg 0

X
seg 0

ACK 1
ACK 2

ACK 3
ACK 4

seg 1
seg 2
seg 3
seg 4

seg 0

ACK 0

ACK 5
ACK 7ACK 6

seg 5
seg 6
seg 7
seg 8
seg 9

ACK 9ACK 8

Figure 5

• The first 4 ACKs from B to A are lost the first time they are transmitted, while
all other segments arrive at their destination uncorrupted and in order. Complete

10



the two diagrams in Figure 6 in each of the following two cases: (i) A and B use
GBN, and (ii) A and B use SR.

seg 0
seg 1
seg 2
seg 3
seg 4

XACK 0
XACK 3

XACK 1
XACK 2

ACK 4

seg 5
seg 6
seg 7
seg 8
seg 9

ACK 5
ACK 7ACK 6

ACK 9ACK 8

seg 0
seg 1
seg 2
seg 3
seg 4

XACK 0

XACK 3

XACK 1

XACK 2

ACK 4
seg 5
seg 6
seg 7
seg 8
seg 9

ACK 5
ACK 7ACK 6

ACK 9ACK 8

seg 0
seg 1
seg 2
seg 3 ACK 1ACK 0

ACK 3ACK 2

tim
eo

ut
 s

eg
 3

tim
eo

ut
 s

eg
 2

tim
eo

ut
 s

eg
 1

tim
eo

ut
 s

eg
 0

Figure 6

• Based on your answers to the previous two questions, can you draw a general
conclusion about when one should prefer GBN over SR and vice versa? Justify
your answer, e.g., if you state that one should prefer GBN in situation X, please
say what metric GBN improves relative to SR in situation X.

SR is expected to achieve higher sender utilization and throughput than
GBN when there are few, independent segment losses.

11



GBN is expected to achieve higher sender utilization and throughput than
SR when there is bursty loss on the reverse channel (many ACKs get lost
back to back).

12



Reliable data delivery over unreliable networks

Table 1 describes different network channels between a sender A and a receiver B. E.g.,
in channel (3), there may be segment corruption only on the path from A to B, and
there needs to be support for pipelining. There is no segment reordering in any of the
channels.

channel ID errors in A→ B errors in B → A support for pipelining?
(1) none none yes
(2) corruption none no
(3) corruption none yes
(4) corruption &loss none yes
(5) corruption & loss corruption & loss yes

Table 1: Description of network channel types.

For each channel, specify which of the mechanisms in Table 2 are necessary for providing
reliable data delivery (no data loss and no data duplication).

You have the following constraints:

• Specify a mechanism only if it is necessary. E.g., if one can provide reliable data
delivery over a given channel without checksums, you should not specify checksums
for that channel.

• Do not specify timeout-based retransmissions if NACK-based retransmissions are
sufficient.

Fill in Table 2 by writing “X” in a corresponding cell to select each necessary mechanism.
Then justify your choice for each channel by explaining why the mechanisms you picked
are necessary and sufficient.

channel ID sequence numbers checksums
NACK-based
retransmissions

timeout-based
retransmissions

(1)
(2) X X
(3) X X X
(4) X X X
(5) X X X

Table 2: Reliability mechanisms.

13



As a general principle:

• Receivers need sequence numbers to detect duplicate seg-
ments. A protocol’s retransmission mechanism may create duplicate
segments. For example, think of a protocol that uses timeouts to
counter segment loss. If the timeout is too short or the ACK gets
lost, the sender will timeout for a segment that correctly reaches the
destination, and retransmit it. However, duplicate segments have
the same sequence numbers as the original ones, and therefore, the
receiver will be able to detect and drop them.

Also, end-systems may need sequence numbers to identify
exactly which segments the receiver is still missing. This is
relevant when there can be multiple segments on the fly (e.g., due
to pipelining), and any of them could be lost. Depending on the
mechanism used, it is either the receiver that explicitly specifies
the missing segments (NACKs), or it is the sender that infers the
missing segments (the segments it has not received ACKs for, when
a timeout occurs).

• Receivers need checksums to detect whether a segment is
corrupted or not, so as to discard or accept it.

See Table 2 for the solution. The justification follows.

(1) No errors occur in this channel; there is never any need to retransmit
segments.

(2) Sequence numbers are not needed, as at any point in time there can
be only one segment on the fly (no pipelined segments).

Checksums are needed for the receiver to detect corrupted segments.

NACK-based retransmissions are sufficient: The receiver can ex-
plicitly notify the sender about a corrupted segment, since (i) all
NACKs reach the sender (no errors on the B → A direction), and
(ii) whenever the sender receives a NACK, it knows that the NACK
corresponds the last segment that was transmitted.

(3) Same as in the previous channel, with the difference that sequence
numbers are now required to distinguish among pipelined segments:
From the point of view of the sender, any of the pipelined segments

14



could have been corrupted. So the receiver must specify in the NACK
the sequence number of the segment that got corrupted.

(4) Like the previous channel, sequence numbers are needed to distin-
guish among pipelined segments; also, checksums are needed for the
receiver to detect corrupted segments.

Unlike the previous channel, a NACK-based retransmission mech-
anism does not suffice: For example, when the last segment of a
transfer is lost, there is no way for the receiver to infer it and notify
the sender.

Note that unlike the previous channel where no unnecessary retrans-
missions occur, sequence numbers are also needed here to detect
duplicate segments. These segments can be generated by our timeout-
based retransmission mechanism if the timeout is too short.

(5) Same as in the previous channel. The reasoning is similar to the one
we used for the symmetrical A → B channel.

15


	Go-Back-N in the presence of data-segment loss
	Now also with ACK-segment loss
	A more challenging scenario
	Thinking creatively about Go-Back-N
	Thinking about different transport-layer protocols
	Now with segment loss
	A more challenging scenario
	Reliable data delivery over unreliable networks

