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Outline (from last lecture)

® Interaction with application layer
e UDP
e TCP

® Reliable data delivery

® Imaginary protocol
® UDP & TCP at the next lecture
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Outline (from last lecture)
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UDP: reliability elements

® UDP does not really offer
reliable data delivery

® Checksums to detect corruption
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TCP: rehability elements

® Checksums to detect corruption

® ACKs to signal successful reception
® SEQs to disambiguate segments

®* Timeouts to detect loss

® Retransmissions to recover
from corruption+loss
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TCP: rehability elements
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SEQs & ACKs

® Data bytes are implicitly numbered
® SEQ: # of the first data byte

® ACK: # of the next data byte that
is expected (cumulative)

® Both always present,
even if it appears unnecessary
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Simple things to remember

® A TCP connection may carry
bidirectional communication

® A segment may or may not carry data
(but it always carries a SEQ)

® There exists a maximum segment size
(MSS), dictated by network properties
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TCP: rehability elements

® Timeouts to detect loss

® Retransmissions to recover
from corruption+loss
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How long should the timeout be?
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Timeout calculation
® EstimatedRTT =
0.875 EstimatedRTT + 0.125 SampleRTT
® DevRTT = function(RTT variance)

® Timeout = EstimatedRTT + 4 DevRTT

Empirical, conservative prediction of RTT
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Two retransmission triggers

® Timeout => retransmission of oldest
unacknowledged segment

® 3 duplicate ACKs => fast retransmit of

oldest unacknowledged segment

® avoid unnecessary wait for timeout

® 1 duplicate ACK not enough <= network may have
reordered a data segment or duplicated an ACK
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TCP: rehability elements

® Checksums to detect corruption

® ACKs to signal successful reception
® SEQs to disambiguate segments

®* Timeouts to detect loss

® Retransmissions to recover
from corruption+loss
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Is TCP Go-back-N or SR?

® Go-back-N: cumulative ACKs,

retransmits multiple segments

® SR: selective ACKs,
retransmits 1 segment on timeout

® TCP: cumulative ACKs,
retransmits 1 segment => Go-back-N/SR mix
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TCP elements

® Connection setup and teardown
® Connection hijacking

® Connection setup (SYN) flooding
®* Flow control

® Congestion control

Computer Networks
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TCP elements

® Connection setup and teardown
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Connection setup

® 3-way handshake
® "TCP client”: end-system initiating the handshake
® “TCP server”: the other end-system

®* First 2 segments carry a SYN flag
® 1-bit field in the TCP header

® “TCP connection” = resources (sockets,
buffers...) allocated for communication
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TCP elements

® Connection hijacking
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How to prevent connection hijacking?
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Connection hyjacking

* Attacker impersonates TCP server (or client)

® sends segment that appears to be coming from
the impersonated end-system

®* Approach: fake valid segment
® if the TCP header predictable

® Solution: make TCP header (SEQS)
unpredictable
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TCP elements

® Connection setup (SYN) flooding
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SYN flooding

® Attacker exhausts buffer for

incomplete connections
® sends lots of connection setup requests

® Problem: one small resource affects
all TCP communication

® Solution: remove the resource
® pass the state to the TCP client
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TCP elements

° Flow control
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Flow control

® Goal: not overwhelm the receiver

® not send at a rate that the
receiver cannot handle

e How: 'receiver window”

® spare room in receivers rx buffer
® receiver communicates it to sender
as TCP header field

Computer Networks
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TCP elements

® Congestion control
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Congestion control

® Goal: not overwhelm the network

® not send at a rate that the
would create network congestion

®* How: “congestion window”
® number of unacknowledged bytes that the
sender can transmit without creating congestion
® sender estimates it on its own
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Bandwidth-delay product

® Max amount of traffic that the sender
can transmit until it gets the first ACK

® = the maximum congestion window size
that makes sense
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Self-clocking

® Sender guesses the “right” congestion
window based on the ACKs

® ACK = no congestion, increase window

® No ACK = congestion, decrease window
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Increase window size

® Exponentially
® by 1 MSS for every ACKed segment
® = window doubles every RTT

® when we do not expect congestion
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Increase window size

® Exponentially
® by 1 MSS for every ACKed segment
® = window doubles every RTT
® when we do not expect congestion

® Linearly
* by MSS*MSS/N for every ACKed segment
® =by 1 MSS every RTT
® when we expect congestion
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Goal: 1ncrease N by MSS bytes per RTT

Alice sends N unack-ed bytes per RTT
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Basic algorithm (Tahoe)

® Set window to 1 MSS,
increase exponentially

® On timeout, reset window to 1 MSS,
set ssthresh to last window/2

® On reaching ssthresh,
transition to linear increase
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Basic algorithm (Reno)

® Set window to 1 MSS, increase exponentially

® On timeout, reset window to 1 MSS,
set ssthresh to last window/2, retransmit

® On receiving 3 duplicate ACKs,
set window to ssthresh (+inflation), retransmit

® On reaching ssthresh transition
to linear increase
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new ACK new ACK

window = window + MSS window = window + MSS*MSS/window

window >= ssthresh

exponential linear

INCrease increase

timeout
. ssthresh = window/2
’rlmeou’r _____________ window = MSS
ssthresh = window/2 retransmit
window = MSS
retransmit
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new ACK

window = window + MSS

exponential
increase
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retransmit
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TCP terminology

® Exponential increase = slow start
® its called slow, because it starts from a
small window; but its not really slow,
the window increases exponentially

® Linear increase = congestion avoidance
® this term does make sense; it means that
TCP expects congestion, so it increases the
window more cautiously
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Flow + congestion control
® Goal: not overwhelm receiver or network

® How: sender window
® sender learns receiver window from receiver
® sender computes congestion window on its own
® Sender window = min{ receiver w, congestion w }

Computer Networks 59



