[ecture 6:

The Transport Layer

Katerina Argyraki, EPFL

Outline (from last lecture)

® Interaction with application layer
e UDP
e TCP

® Reliable data delivery

® Imaginary protocol
® UDP & TCP at the next lecture

Computer Networks

Outline (from last lecture)

o UDP & TCP at the next lecture

Computer Networks

UDP: reliability elements

® UDP does not really offer
reliable data delivery

® Checksums to detect corruption

Computer Networks

TCP: rehability elements

® Checksums to detect corruption

® ACKs to signal successful reception
® SEQs to disambiguate segments

®* Timeouts to detect loss

® Retransmissions to recover
from corruption+loss

Computer Networks

TCP: rehability elements

® ACKs to signal successful reception

® SEQs to disambiguate segments

Computer Networks

Alices computer

-

rdt send([A]) \

udt send(...)

rdt rcv(..)

deliver data([B])

_SEQ OIACK lol [A]

M

Bobs computer

-

~N

rdt rcv(..)

deliver data([A])

rdt send([B])

udt send(...)

SEQs & ACKs

® Data bytes are implicitly numbered
® SEQ: # of the first data byte

® ACK: # of the next data byte that
is expected (cumulative)

® Both always present,
even if it appears unnecessary

Computer Networks

Ali

Alices computer

a4)

200 bytes

SEQ 0
_ACK
10 [GET reqUest]
ﬂ
1
sE%(12%0[135_18' part 11
AC
2
SED 125 1£ile part 21
A

Bobs computer

r

1500 bytes

1500 bytes

100 bytes

~

Simple things to remember

® A TCP connection may carry
bidirectional communication

® A segment may or may not carry data
(but it always carries a SEQ)

® There exists a maximum segment size
(MSS), dictated by network properties

Computer Networks

11

TCP: rehability elements

® Timeouts to detect loss

® Retransmissions to recover
from corruption+loss

Computer Networks

12

Ali

How long should the timeout be?

Computer Networks

14

Timeout calculation
® EstimatedRTT =
0.875 EstimatedRTT + 0.125 SampleRTT
® DevRTT = function(RTT variance)

® Timeout = EstimatedRTT + 4 DevRTT

Empirical, conservative prediction of RTT

Computer Networks 15

Alices computer

~

fast
retransmit

~

Bobs computer

r

~

Two retransmission triggers

® Timeout => retransmission of oldest
unacknowledged segment

® 3 duplicate ACKs => fast retransmit of

oldest unacknowledged segment

® avoid unnecessary wait for timeout

® 1 duplicate ACK not enough <= network may have
reordered a data segment or duplicated an ACK

Computer Networks 17

TCP: rehability elements

® Checksums to detect corruption

® ACKs to signal successful reception
® SEQs to disambiguate segments

®* Timeouts to detect loss

® Retransmissions to recover
from corruption+loss

Computer Networks

18

Is TCP Go-back-N or SR?

® Go-back-N: cumulative ACKs,

retransmits multiple segments

® SR: selective ACKs,
retransmits 1 segment on timeout

® TCP: cumulative ACKs,
retransmits 1 segment => Go-back-N/SR mix

Computer Networks 19

TCP elements

® Connection setup and teardown
® Connection hijacking

® Connection setup (SYN) flooding
®* Flow control

® Congestion control

Computer Networks

20

TCP elements

® Connection setup and teardown

Computer Networks

21

Alices computer

~

connection
socket

send
buffer

receive
buffer

~

connection
established

Bobs computer

r

listening
socket

connection
socket

send
buffer

receive
buffer

~

Alices computer

~

connection
socket

send
buffer

receive
buffer

~

FIN

—

connection
closed

Bobs computer

r

listening
socket

connection
socket

send
buffer

receive
buffer

~

Connection setup

® 3-way handshake
® "TCP client”: end-system initiating the handshake
® “TCP server”: the other end-system

®* First 2 segments carry a SYN flag
® 1-bit field in the TCP header

® “TCP connection” = resources (sockets,
buffers...) allocated for communication

Computer Networks 24

TCP elements

® Connection hijacking

Computer Networks

25

Jack's computer

Alices computer

-

~N

connection
hijacked

Bobs computer

-

(

26)

~N

How to prevent connection hijacking?

Computer Networks

27

Jack's computer

Alices computer

4)

Bobs computer

-

(

28)

~N

Connection hyjacking

* Attacker impersonates TCP server (or client)

® sends segment that appears to be coming from
the impersonated end-system

®* Approach: fake valid segment
® if the TCP header predictable

® Solution: make TCP header (SEQS)
unpredictable

Computer Networks 29

TCP elements

® Connection setup (SYN) flooding

Computer Networks

30

Ali

connection
established

Deniss computer Bobs computer

4) 4)

SYN -

%}

ﬁ\)
%
—r

32

Ali

connection
established

SYN flooding

® Attacker exhausts buffer for

incomplete connections
® sends lots of connection setup requests

® Problem: one small resource affects
all TCP communication

® Solution: remove the resource
® pass the state to the TCP client

Computer Networks

35

TCP elements

° Flow control

Computer Networks

36

Alices computer

s

~

Bobs computer

r

receive
buffer

~

Flow control

® Goal: not overwhelm the receiver

® not send at a rate that the
receiver cannot handle

e How: 'receiver window”

® spare room in receivers rx buffer
® receiver communicates it to sender
as TCP header field

Computer Networks

38

TCP elements

® Congestion control

Computer Networks

39

Congestion control

® Goal: not overwhelm the network

® not send at a rate that the
would create network congestion

®* How: “congestion window”
® number of unacknowledged bytes that the
sender can transmit without creating congestion
® sender estimates it on its own

Computer Networks 40

Alices computer

a4)

[data]
_(data;——

[data] |
[data] s 7
[data] &
[data] "0
[da'

N

pch

R bps x RTT sec

bandwidth delay product

Bobs computer

r

\

~

Bandwidth-delay product

® Max amount of traffic that the sender
can transmit until it gets the first ACK

® = the maximum congestion window size
that makes sense

Computer Networks 42

Ali

Self-clocking

® Sender guesses the “right” congestion
window based on the ACKs

® ACK = no congestion, increase window

® No ACK = congestion, decrease window

Computer Networks

44

Alices computer

s

N=100 bytes

N=200 bytes

N=300 bytes
300 - 399
400 - 499

N=400 bytes

500 - 599
600 - 699

~

Bobs computer

r

~

Alices computer

~

N=100 bytes

N=200 bytes

N=300 bytes
N=400 bytes

~

SEQ ¢

\

SEQ 100
SEQ 200

SE 3oo
4oo
SE 500
600

Bobs computer

r

~

Increase window size

® Exponentially
® by 1 MSS for every ACKed segment
® = window doubles every RTT

® when we do not expect congestion

Computer Networks

47

Alices computer

s

N=100 bytes

N=200 bytes

N=300 bytes
N=400 bytes

timeout

ssthresh=
200 bytes

~

Bobs computer

r

~

Alices computer

s

N=100 bytes

N=200 bytes

N=250 bytes
N=290 bytes

N=324 bytes

ssthresh=
200 bytes

~

Bobs computer

r

~

Increase window size

® Exponentially
® by 1 MSS for every ACKed segment
® = window doubles every RTT
® when we do not expect congestion

® Linearly
* by MSS*MSS/N for every ACKed segment
® =by 1 MSS every RTT
® when we expect congestion

Computer Networks

50

Goal: 1ncrease N by MSS bytes per RTT

Alice sends N unack-ed bytes per RTT

N
= —— data segments per RTT
MSS J P

N
She expects pygg ACKs per RTT

N L, MSS*MSS

— = M byt
MSS - bytes SS bytes

Computer Networks

Basic algorithm (Tahoe)

® Set window to 1 MSS,
increase exponentially

® On timeout, reset window to 1 MSS,
set ssthresh to last window/2

® On reaching ssthresh,
transition to linear increase

Computer Networks

52

Alices computer

s

N=400 bytes

fast
retransmit

N=500 bytes
700 - 799

N=200 bytes

ssthresh=
200 bytes

500 - 599 3
Q0 - 693/

~

Bobs computer

r

~

Alices computer

s

N=500 bytes

retransmit
N=500 bytes

N=600 bytes

N=200 bytes

ssthresh=
200 bytes

~

0
SEQ 800 nCE 8

SEQ900\)

Bobs computer

r

~

Basic algorithm (Reno)

® Set window to 1 MSS, increase exponentially

® On timeout, reset window to 1 MSS,
set ssthresh to last window/2, retransmit

® On receiving 3 duplicate ACKs,
set window to ssthresh (+inflation), retransmit

® On reaching ssthresh transition
to linear increase

Computer Networks 3

new ACK new ACK

window = window + MSS window = window + MSS*MSS/window

window >= ssthresh

exponential linear

INCrease increase

timeout
. ssthresh = window/2
’rlmeou’r _____________ window = MSS
ssthresh = window/2 retransmit
window = MSS
retransmit

Computer Networks >6

new ACK

window = window + MSS

exponential
increase

timeout

ssthresh = window/2
window = MSS

retransmit
3 duplicate ACKs

window >= ssthresh

ssthresh = window/2
window = MSS
retransmit

new ACK

window = window + MSS * [factor<1]

linear

3 duplicate ACKs

ssthresh = window/2
window = ssthresh + 3 MSS
fast retransmit

increase

new ACK

window = ssthre¢sh

ssthresh = window/2
window = ssthresh + 3 MSS
fast retransmit

Computer Networks

fast
recovery

duplicate ACK

window = window + MSS

57

TCP terminology

® Exponential increase = slow start
® its called slow, because it starts from a
small window; but its not really slow,
the window increases exponentially

® Linear increase = congestion avoidance
® this term does make sense; it means that
TCP expects congestion, so it increases the
window more cautiously

Computer Networks

58

Flow + congestion control
® Goal: not overwhelm receiver or network

® How: sender window
® sender learns receiver window from receiver
® sender computes congestion window on its own
® Sender window = min{ receiver w, congestion w }

Computer Networks 59

