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Fluid description of plasmas

The MHD model: summary of its implications

• Flux freezing in ideal MHD and consequences for plasma confinement and stability

MHD equilibrium

• Basic system of equations

• Magnetic tension and pressure terms

• Examples of equilibrium configurations

– the z-pinch
– the θ-pinch
– the force-free equilibrium
– bending the z-pinch into a torus

MHD stability

• General discussion on stability

• Example of instabilities: sausage and kink instability of a z-pinch.

• General interchange instability, good and bad curvature regions

• Methods to stabilise a plasma
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1 MHD model

The MHD model is a single fluid description of plasma, for macroscopic, large scale, relatively
slow phenomena.

Ideal MHD η = 0⇒ flux freezing (ex. dynamo effect, solar flares).

The magnetic flux contained within any surface moving with the plasma is constant.

Application of flux freezing to fusion: plasma can be shaped or stabilised by magnetic
fields

Example 1: Linear z-pinch

Bθ

Jp

• Jp (plasma current) produces Bθ.
• Increasing Jp increases Bθ and plasma is compressed

(flux must be conserved - in this case it is the flux on
any azimuthal surface).

Example 2: B-field produced by external sources, plasma inside conductor

(2)

(1)

B

B

(1)

(2)

(1) conductor (2) plasma

If B is increased, the plasma must be compressed as field lines cannot move through it.
Conductor must be solid enough mechanically!

Example 3: Stabilisation of plasma instability by a conducting wall

J

⌃
 
⌃

 
⌃

 

• Plasma has current densitiy J.
• An instability develops.
• If plasma moves toward the wall, flux conservation

tends to keep the plasma in the center.

Resistive MHD η ̸= 0 ⇒ B-field can diffuse with respect to the plasma

∂B

∂t
= ∇∇∇× (u× B) +

η

µ0
∇2B. (1.1)

The characteristic time for diffusion of magnetic field is τ = µ0L
2

η , where L is the typical
scale length. This can be very long (several seconds) for fusion plasmas, as η is small due
to their high temperature, and L is generally large. Finite resistivity of the plasma (and
of the conductor outside) limits the beneficial effects of flux freezing for confinement and
stabilization to diffusion times.
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1.1 Ideal MHD equilibrium

Static equilibrium: d
dt = 0, u = 0. The ideal MHD system becomes

{
J× B = ∇∇∇p ∇∇∇× B = µ0J
∇∇∇ · B = 0 ∇∇∇ · J = 0

(1.2)

Notes.
1.

B · (∇∇∇p) = B · (J× B) = 0 (∇∇∇p ⊥ B) (1.3)

Thus, pressure is constant along magnetic field lines: B lies on p-constant surfaces,
also called magnetic surfaces.

2.
J · (∇∇∇p) = J · (J× B) = 0 (1.4)

J also lies on p-constant surfaces
Thus, isobaric surfaces = magnetic surfaces = current surfaces (in ideal MHD equilib-
rium).
Note, however, that J and B are not necessarily aligned (or orthogonal).
This gives a simple way to represent the plasma equilibrium.

3. Force balance is J× B = ∇∇∇p, which can be expressed in a more intuitive way:

∇∇∇p =
1

µ0
(∇∇∇× B)× B =



B2

µ0
(b · ∇∇∇)b

︸ ︷︷ ︸
tension

−∇∇∇⊥
(
B2

2µ0

)

︸ ︷︷ ︸
pressure




Tension = “restoring” force acting when B-lines are bent ∼ B2

µ0Rc
, with Rc being the

radius of curvature of the field lines

where we have used b = B/B, B × (∇∇∇ × B) = ∇∇∇
(
B2/2

)
− (B · ∇∇∇)B and ∇∇∇⊥ =

∇∇∇− b(b · ∇∇∇).
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Examples of MHD equilibrium configurations

Example 1: Linear z-pinch

B θ

J

Current flowing along the z-axis




p = p(r)

B = Bθ(r)θ̂

J = Jz(r)ẑ

Cylindrical coordinates




∇× A)r =
1

r

∂Az
∂θ
−
∂Aθ
∂z

∇× A)θ =
∂Ar
∂z
−
∂Az
∂r

∇× A)z =
1

r

∂rAθ
∂r
−
1

r

∂Ar
∂θ

From Ampere’s law

1

µ0r

d
dr
(rBθ) = Jz

For a complete calculation we need to assume a current density profile. Let’s take the
simplest case Jz = const =

Ip
πa2

. Thus

1

µ0r

d
dr
(rBθ) =

Ip
πa2
⇒ rBθ =

µ0r Ip
πa2

r

2
+ const ⇒

Bθ(0)=0
Bθ(r) =

µ0r

2πa2
Ip, for r ≤ a.

Note that for r > a, it’s the usual application of Ampere’s law

Bθ(r) =
µ0Ip
2πr
, for r > a

From force balance:
dp

dr
= −JzBθ

Thus for r ≤ a:
dp
dr
= −Jz

µ0Ip
2πa2

r ⇒ p(r) = −
µ0I

2
p

2π2a4
r2

2
+ const

But, p(a) = 0⇒ const = µ0I
2
p

2π2a4
a2

2 . The pressure (inside the plasma) is given by

p(r) =
µ0I

2
p

4π2a2

[
1−

( r
a

)2]
(1.5)

Summary
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Example 2: Low-β plasma

β = p
B2/2µ0

≪ 1, so pressure term ∼ 0. So J×B ∼= 0 meaning J parallel to B or J = µ(r)B
with µ scalar quantity. Current can only flow along B, not across it. As ∇∇∇ · J = 0,

∇∇∇ · (µ(r)B) = µ(r)∇∇∇ · B+ (B · ∇∇∇)µ(r) = 0⇒ (B · ∇∇∇)µ(r) = 0

µ is constant along the field line, i.e. the ratio J/B is constant. A little like a “normal” fluid
in “physical” conducts.

 
  

 
 

 
Stronger B
Stronger J

Weaker B

Weaker J

Example 3: Toroidal equilibrium

Bθ
Jr Bend the z-pinch into a torus.

Bθ is due to plasma current: it’s stronger inside than outside. On a cross-section:

∇⊥

�
B2

2µ0

�
The pressure force is outwards: “hoop force”.
Can be seen as many conductors repelling
each other as they carry current in the
opposite direction.

How to reinforce the field to the outside, and weaken it to the outside? With a vertical field!

+ =

Bv

+ ==

Another way of saying it, is that by J × Bv -force the plasma is pushed back (of course,
implying that we have a toroidal current too!). This is part of the tokamak concept (it needs
an external vertical field for equilibrium), which will be discussed in the next lecture.
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2 MHD stability

For any practical purpose, the equilibrium is a necessary condition to have a confined plasma
but not sufficient to hold it for macroscopic time scales. For this we need to have a stable
equilibrium.

Mechanical analogy

stable
unstable linearly unstable but

non-linearly stable

linearly stable but
non-linearly unstable

metasable

Perturbations that lower/increase the potential energy correspond to unstable/stable situa-
tions.

To study the stability in 3D (fusion relevant) situations, one needs to consider all possible
perturbations to equilibrium. How to do it?

• Macroscopic “interchange” of flux tubes (we know flux is frozen-in with plasma): does
energy increase or decrease when the flux tubes are “interchanged”? (stable vs. unsta-
ble, and how fast does the instability grow?)

• Fourier analysis of small perturbations (linearisation), or normal mode analysis: consider
perturbations ∝ exp(ik ·x− ıωt) or, in a cylinder, ∝ exp(ikx+ imθ− iωt), m ∈ Z. This
is a useful approach in uniform plasmas. Im(ω) will give us the growth rate (positive
or negative) of the instability.

• In non-uniform plasmas, we take the MHD equation of motion and impose a small
displacement ξ → ξ̇ = F (ξ). This is the Lagrangian point of view. Still, the issue
is the sign of the change of the energy. For normal modes one gets an eigenvalue
equation: Aξ̇ = ω2ξ̇⇒ the sign of ω2 determines the stability.
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Examples of instabilities

Example 1: z-pinch with “sausage perturbation”

J

A

B
Z

exp(ıkzz + ımθ),

kz ̸= 0, m = 0

At point A, Bθ is stronger −→ tension B2θ
µ0r

and pressure B
2
θ
µ0

increase, the perturbation in-
creases as the inward force ∇∇∇p is not balanced.

At point B, Bθ is weaker and B2θ
µ0r

is smaller: kinetic pressure is not balanced and pushes the
plasma out ⇒ perturbation increases. =⇒ Instability

Example 2: z-pinch with kink

B

A

kz ̸= 0, m = 1
B is stronger in A than in B: perturbation
grows. =⇒ Instability

Note. The same configuration can be unstable with respect to different kinds of perturba-
tions.

How would you act to stabilise the z-pinch? → Adding Bz (z/θ-pinch): Bz provides “tension”
along z .

In general, bending field lines requires energy, so the presence of B-tension along a given
direction is stabilising. Perturbations leading to instabilities tend to “avoid” bending field
lines.

2.1 Intercharge instability (Rayleigh-Taylor)

Example: ordinary fluids of different density

water

air

p

Glass of water turned upside-down.

Air pressure would be enough to hold water up, net force is zero
⇒ equilibium.

However (as we know from experience), this equilibrium is unstable. This is the case in
general whenever a heavier fluid sits on top a light fluid.
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Any ripple/perturbation at the wa-
ter/air interface will increase
(Rayleigh-Taylor instability).

Note. This is an example of interchange instability, as we can think of replacing the two
volume elements at the fluid interface.

Plasma

Consider a situation similar to that seen above: plasma on top ("heavier" fluid), vacuum
with magnetic field ("lighter" fluid) at the bottom, still in the presence of gravity.

Consider a small perturbation to the interface

+
+

+
+

+
+−−

−
−−

−

(g × B)ions
(g × B)electrons

E × B

E × BE × B

E E

g

B⊙B⊙ B⊙

E 

Plasma particles are subject
to g-drift.

vg =
m

q

g× B
B2

(2.1)

(much stronger for ions!)

An electric field will be set-
up, giving rise to E × B,
which will increase the per-
turbation.

One could argue that gravity is, in general, not important in plasma dynamics. In fact, in
most cases of interest the effect of gravity in the mechanism of the Rayleigh-Taylor instability
is replaced by that of B-field gradient or curvature.

Example: unstable vs. stable

Rc
B

Bad curvature ⇔ unstable

vcurv =
m

q
v2||
Rc × B
R2cB

2
(2.2)

The same mechanism as above applies, if we replace the
gravitational force by the centrifugal force

mg −→
mv2||Rc

R2c

As Rc point from the “heavier” fluid (plasma) to the “lighter” fluid (vacuum with B) we have
instability. This is a case of “bad curvature”: The curvature of the field points away from
the region of higher pressure. The plasma is unstable when it is immersed in a magnetic field
that is concave towards the plasma.
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The opposite case is of course stable.

RcB

Good curvature ⇔ stable

This corresponds to having g pointing from the lighter
fluid to the heavier fluid.

The Rayleigh-Taylor instability is a special case of a general class of instabilities, interchange
instabilities, in plasma. These instabilities arise when by swapping the position of two flux
tubes, the energy of the system decreases. They are of fundamental importance at the
plasma-vacuum interface.

Note. The criteria for instability must be considered globally. In a real configuration there
will be destabilising regions and stabilising regions. The balance between the two will give
the global stability properties.

Example: mirror

B
A

A bad curvature region
B good curvature region

The balance of the two regions may allow macroscopic sta-
bility, although there can be localised instabilities in the bad
curvature region.

In addition to field line bending there as another mechanism that can help stabilising inter-
change instabilities: “magnetic shear ”

z1

z2

z3

At different depths in the plasma, B-field lines are di-
rected along different directions: interchange becomes
impossible unless we bend B-field lines → stabilising
effect.

This is the case of a tokamak: the “pitch” of the helical field structure depends on the radial
position.


