=PFL

The Glient/Server Design Pattern

Prof. George Candea
School of Computer & Communication Sciences

o Recap of modularization

* Local procedure calls (module = procedure)
Memory safety

* Program objects & types (module = memory objects)

* (Client/server architecture (different address spaces) Message-based

communication

o Example: Remote procedure calls

Modularity

o Specify “what” a component/subsystem does

* Together with modularity,
separates “what” from “how’
=> abstraction

WHAT

* Scope
* Private: unique within a context (e.qg., a private IP address)
* (5lobal: unique across contexts (e.q., a global IP address)

o Structure

* Hierarchical: name relationship implies object relationship (e.g., two IP addresses
sharing the same prefix)

* Flat: name relationship implies nothing (e.q., content IDs in Peer-to-Peer networks)
* Naming system

o Directories of name->value mappings, support name lookups and updates

Layers

o Layer = group of modules

* Internet transport layer = UDP + TCP
* Internet network layer = IP

* Module communicates with modules in layer above/below,
on the same layer in different stack instances, through AP

* send/receive calls/notifications

* Module communicates with modules in the same layer stack,

on a different stack instance, through a protocol

TCP/UDP

7

TCP/UDP

IP/ICMP

7

IP/ICMP

ARP/MAC

ARP/MAC

* Local procedure calls (module = procedure)
Memory safety

* Program objects & types (module = memory objects)

* (Client/server architecture (different address spaces) Message-based

communication

o Example: Remote procedure calls

(Local) Procedure Galls

Basic mechanism for modularizing a program
(Modules = procedures)

) A
=
e .
o) > Stack pointer
'
@)
S
N
Callee’s
= stack
® frame
S
@
<
Q
Q.
Q.
7
g' Caller’s
@ stack
Q)
T frame
Dy

) A
=
O .
o) < Stack pointer
' AN
O \\\
‘lcg ~
(D \\

Callee’s RN

K

= stac
) frame .
3 .
O S
- N
. .
Q
Q.
Q.
-
(0))
= Caller’s
® stack
Q
& frame

<

-_——
—_—
—_
—_—
—_—
—_—
—_—
—_——
—_—
—_
—_—
—_—
—_—
—_—
—_
—_—
—_—
—_—
—_—
—_—
—_—
—_—
-_—
—_—
—_—
—_——
—_—
—_—
—_—
—_—
-_—
—_—
—_—
—_——
—_—
—_—
—_—
—_—
—_—
—_—
—_—
—_
—_— -
—_—

-_—
—_—

Program code

Program data

Heap

Stack

) A
=
e .
o) > Stack pointer
'
@)
S
N
Callee’s
= stack
® frame
S
@
<
Q
Q.
Q.
7
g' Caller’s
@ stack
Q)
T frame
Dy

0 A
=
o
O > SP
'
O
8
@» Space for local vars
Callee’s
= e
g Return address
i Call arguments
% Saved temp registers
0p)
=] Caller’s
o) stack
QO
0 frame
Ov

>

Stack grows

« SP

Caller’s
stack
frame

oseaJoul sippe Alowsn

<

Stack grows

oseaJoul sippe Alowsn

>

<

SP

Caller’s
stack
frame

ABI = interface between binary modules
Modularization

* Depends on programmers doing the right thing
(= “soft modularization)

o Compilers and runtimes help

Caller and callee trust each other

o (allee could corrupt caller’s stack (e.qg., buffer overflow)
o (allee might return to wrong addr (e.g., stack smashing)

o (Callee might fail (e.g., SIGFPE due to div by zero)
= “fate sharing"

o (allee might leave return addr in wrong register

Memory safety

* Program objects & types (module = memory objects)

* (Client/server architecture (different address spaces) Message-based

communication

o Example: Remote procedure calls

Memory Safety

Fundamental requirement for
good modularity within the same address space

Memory Safety

* Memory can be defined (allocated) or undefined (not allocated)

o Assume deallocated memory is never reused b
* Pointeris a capability (p,b,e) 0—>
* Base b, extent e, pointer p e

o *pis safe iff it accesses memory within the target obj that p is based on

* An execution is memory-safe <=> all ptr derefs in that exec are safe

* Aprogram is memory-safe <=> all possible executions (for all possible
inputs) are memory-safe

Based on Nagarakatte et al., SoftBound: Highly Compatible and Complete Spatial Memory Safety for C, PLDI 2009

http://www.cis.upenn.edu/acg/papers/pldi09_softbound.pdf

* pisbased on memory object X iff p Is

1. obtained by allocating X at runtime on the heap, or P— D
2. obtained as &X where X is statically allocated, or X
* e.g, local or global variable, control flow target e

3. obtained as &X.foo (i.e., from field of X), or

4. the result of a computation involving operands that are ptrs based on X or non-ptrs

o copy of another pointer
o valid pointer arithmetic
e array indexing

Memory Safety

* Pointeris a capabllity (p,b,e)

* Base b, extent e, pointer p
o *pis safe Iff accesses memory within the target obj that p is based on
b <= p <= e

* An execution IS memory-safe <=>
all pointer dereferences in that execution are safe

* Aprogram is memory-safe <=>
all possible executions (for all possible inputs) are memory-safe

1 and that memory is defined

Memory Safety

* Memory safety is fundamental to in-memory client/server

* Apointeris a name for X => set of names for reaching X is transitive
closure over "pased-on” relationship

Around 70% of our high severity security bugs are memory

o Spatial vs. temporal violations of memory safety unsaet proviems iat s, mistakes witn cic++ pointers)

Half of those are use-after-free bugs.

* Program objects & types (module = memory objects)

* (Client/server architecture (different address spaces) Message-based

o Example: Remote procedure calls communication

Program Ohjects & Types

Strong modularization within the same address space
(Modules = objects within the program)

struct Rectangle {
int length;
int width;

}

| class Rectangle {
int area(struct Rectangle r)

d | private int length, width;
r.length * r.width;
¥ public Rectangle(int 1, int b)
ommm — {
length = 1;
width = b:
}
public int area()
{
return length x width;
}

struct Rectangle {

int length; 1
o widih: Encapsulation

}

| class Rectangle {
int area(struct Rectangle r)

1 | private int length, width;
r.length * r.width;
b public Rectangle(int 1, int b)
— — 1
length = 1,;
width = b:
¥
Data separate public int area()
from Behavior i

return length x width;

}
VS. — e

Data + Behavior
Inseparable

Objects & tyne safety = stronger intra-program modularity

o Untyped languages

o Weakly typed languages (e.g., C)
* Have types, but can change (e.q., explicitly cast data from one type to another)
o Strongly typed languages (e.g., Lisp)
* Each chunk of memory has well defined type, no Object or void
o Python, C#, C++, Rust, ... might qualify
* Ensuring type safety

o Static (Rust, Haskell) vs.
dynamic (Python, Ruby)

* Programmers are humans

* Trusting gives you at best a “soft” modularization

o Better to trust compilers, runtimes, libraries, operating systems, ...

* E.g., modularize using Docker-style containers (OS-level virtualization)
o [ower layers are widely used and robust (even though they too are buggy...)

o Better to trust hardware

* Cheap way to (sort of) do this: modularize using virtual machines
o Widely used and robust (even though it too is buggy...)

The lower the layer where modularity is enforced, the stronger the modularity

* (Client/server architecture (different address spaces) Message-based

o Example: Remote procedure calls communication

S9R
S

P
S

Clients/Servers Interacting via Messages

Modularization across different address spaces

* |s the foundation for many system architecture patterns

* event-driven, microservices/SOA, action—-domain-responder (e.g., MVVM), multi-
tiered, peer-to-peer, publish-subscribe, etc.

o Key ideas

* place modules in separate, strongly isolated domains, and have them communicate
via messages

* messages typically need to be marshalled/unmarshalled for send/receive

Physical (and virtuall servers

* Rely on physics
* Reduce fate sharing

* |mprove encapsulation

Client

Client

=

Client

Physical (and virtuall servers

* Rely on physics
* Reduce fate sharing

* |mprove encapsulation

— o

R
Jirtual
Vi Lual

1
e o ol s & PO eI .
ﬂkh:)*"vr‘ "B

o)\ A'E - -
)'v-*‘-\\)'x-: :-:5.“*_ :.Q?—-f

Physical (and virtuall servers

O Rely on phyS|CS Physical Router
* Reduce fate sharing |

* |mprove encapsulation Data Center Gateway

Runs as multiple vRouters
in existing top of rack

switch for N-S traffic
Tenant A / \ Tenant B

Logical Router / \ Logical Router
(distributed VRF

‘i‘ (distributed VRF
running in overlay) /[\ i
g Y [=) running in overlay)
~_ T /.Jo0111/24
[0[ﬁ
VM ‘ VM | VM

10.1.1.14/24

Physical (and virtuall servers

* Rely on physics

* Reduce fate sharing

* |mprove encapsulation C)

Air-gapped Network

Devices included in the air-gapped
network are physically isolated and
can communicate with each other,
but cannot communicate with any
other network outside of the air-gap.

Physical (and virtuall servers

* Rely on physics

* Reduce fate sharing

* |mprove encapsulation C)

Air-gapped Network

Devices included in the air-gapped
network are physically isolated and
can communicate with each other,
but cannot communicate with any
other network outside of the air-gap.

* An exercise In modularization of otherwise monolithic kernels
o Liedtke's minimality principle
o Servers = trusted intermediaries

o Essentially daemon programs with some extra privileges
* e.g., can access physical memory that would otherwise be off-limits

Monolithic kernel

Application

System Call

Microkernel

* An exercise In modularization of otherwise monolithic kernels
o [Liedtke's minimality principle
o Servers = trusted intermediaries

o Essentially daemon programs with some extra privileges
* e.g., can access physical memory that would otherwise be off-limits

* Talks to servers over IPC (inter-process communication)

* Instead of syscalls in monolithic kernels

* How Is fate sharing”? How is encapsulation?

e An exercise In abstraction

o Exterminate all OS abstractions

* Enable user space to safely implement new OS abstractions

* How is fate sharing? How is encapsulation?

Benefits of Glient/Server

* Narrow channels for error propagation

o [solation between “caller” and “callee”

Benefits of Glient/Server

* Narrow channels for error propagation
* [solation between “caller” and “callee”
* Decoupling

* (Can fail independently —> the opposite of “fate sharing”
* Rely on timeouts to infer remote failure

* Forcing function to document interfaces

Drawhacks of Glient/Server

* Marshalling/unmarshalling messages incurs overheads
o Unnatural interaction between modules

* Semantic coupling may render functional decoupling moot

o E.g., caller cannot make progress without an answer

A couple of examples of client/server architectures

Pub/Sub Subscriberj
[Publisher]\ @
msg
msg.—b[Subscriber j
[Publisher

Subscriber)

A couple of examples of client/server architectures

Pub/Sub suscriver |

[Publisher j\ @
msg

/T [R

msg
, 6 . REST ' REST > Account
Publisher AP APt Account
Service

Mobile app

> Inventory

Inventory
Service

' '

AM
.
Browser ‘

8
Microservices | shipping
& Tiered Arch

Shipping
4’

(19 i (14

o Example: Remote procedure calls

Get benefits of client/server organization
with the comfort of a procedure call

Server

apparent flow

apparent flow

Client I-'@’

erver

apparent flow

Server

apparent flow

call

Client L1 ___ | runm| | Server

call return return call
Interface

Client Stub Server Stub

call . return return | | call
RPC Runtime ._ RPC Runtime
Library Library

network
messages

Client process Server process

return

-d

RPC Runtime
Library

Client process

apparent flo

call

Client I-m

Interface

network
messages

Server

call

Server Stub

return | | call

RPC Runtime
Library

Server process

Client address space Server address space

Client

Local procedure call Call Call Execte Return Local procedure invocation

Client stub Server stub
Parameters -> message Unpack Pack Unpack Pack Message -> parameters

RPC Runtime RPC Runtimg
Message -> packet £2t.Send Receive Send Packet -> message
Call Packet
. J
\ v,

Result Packet

Client address space Server address space

Client

Local procedure call Return Call Call Execte Return Local procedure invocation

Client Server stub

Parameters -> message Unpack Pack Message -> parameters
[

RPC Runtime RPC Runtimg
Message -> packet £2t.Send Receive Send Packet -> message
Call Packet
. J
\ v,

Result Packet

Client address space Server address space

Client

Local procedure call Return Call Call Execte Return Local procedure invocation

Client stub Server stub
Parameters -> message Unpack Pack Unpack Pack Message -> parameters

RPC Runtime RPC Runtimg
I
Message -> packet Receive Send Packet -> message
Call Packet)
\ v,

Result Packet

Client address space Server address space

Client Server

Local procedure call Return Call Call Execse Return Local procedure invocation

Client stub Server stub

Parameters -> message Unpack Pack Unpack Pack Message -> parameters

RPC Runtim¢
Message -> packet &2t Send Packet -> message
. Call Packet
. v

Result Packet

Client address space Server address space

Client Server

Local procedure call Return Call Call Execse Return Local procedure invocation

Client stub arver stub

—_
Parameters -> message Unpack Pack Message -> parameters
1

RPC Runtimé RPC Runtimg
Call Packet
- _J
_)

Result Packet

Client address space Server address space

Client

Local procedure call Return Call Local procedure invocation
D —

Client stub Server stub

Parameters -> message Unpack Pack Unpack Pack Message -> parameters

RPC Runtimé RPC Runtimg
Call Packet
- _J
_)

Result Packet

Local procedure call

Parameters -> message

Message -> packet

Client address space

Client

Return Call

Client stub

Unpack Pack

RPC Runtimé¢

Receive Vait Send

Call Packet

Server address space

Server

Execute
Call ! Return

Server

RPC Runtimg

Result Packet

Local procedure invocation

Message -> parameters

Packet -> message

Client address space Server address space

Client

Local procedure call Return Call Call Execse Return Local procedure invocation

Client stub Server stub

Parameters -> message Unpack Pack Unpack Pack Message -> parameters

RPC Runtimg RPC Runtime
Message -> packet £2t.Send Packet -> message
Call Packet
. J
. v

Result Packet

Client address space

Local procedure call

Parameters -> message

Message -> packet

Client

Return Call

Client stub

Unpack Pack

D
7

PC Runtime

L
l

Server address space

Call Packet

Server

Execute
Call ! Return

Server stub

Unpack Pack

RPC Runtimg

Result Packet

Local procedure invocation

Message -> parameters

Packet -> message

Client address space Server address space

Client Server

Local procedure call Return Call Call Execse Return Local procedure invocation

Client stub Server stub

Parameters -> message Unpack Pack Unpack Pack Message -> parameters

RPC Runtimé RPC Runtimg
Call Packet
_ _J
_)

Result Packet

Examples of RPC systems

o NFS
e Java RMI

o Package rpcin Go

* (Google Web Toolkit

o SOAP (successor to XML-RPC)
* Apache Thrift

* gRPC (uses Google Protocol Buffers IDL)

Google

JUNIPEL

I
CISCO.

Workilow for writing RPCG-hased systems

Client address space

Return Call

Receive (Wait Send

=

Unpack Pack

Client

Client stub

RPC Runtime

Call Packet

Server address space

Server

Call E Return

o>

Server stub

RPC Runtimg

Result Packet

Define the service in an IDL file

Generate message implementations using
the IDL compiler

Generate server and client code using the
RPC compiler

Write the server to implement the generated
interface

Write the client to use the interface

Compile, deploy, run

o Strong modularity with the convenience of a procedure call

* Reduce fate sharing by exposing callee failures in a controlled manner

* This means the caller can now recover easily (esp. if asynchronous RPC)

* RPCs typically take longer than a local procedure call

* [eaky abstraction

o |ssues of trust

* How do | know who is making the request?

* How do | know the message was not tampered with?
o .7

o What does “no response” imply?

o At-least-once semantics
e At-most-once semantics

* EXxactly-once semantics

REST vS. RPC

* =Representational State Transfer

o REST has a resource-oriented thinking, while RPC is action-oriented
* CRUD, and the set of legal actions from any state is always controlled by the server

o All communication Is stateless server-side and cacheable

* Most popular data representation = JSON

o REST is often (~always) done over HTTP

o GET POST/PUT or DELETE requests
* avoid reinventing the wheel (e.g., metadata for caching)

* Local procedure calls (module = procedure)
Memory safety

* Program objects & types (module = memory objects)

* (Client/server architecture (different address spaces) Message-based

communication

o Example: Remote procedure calls

