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Magnetic confinement

• The tokamak: concept and its main features

• The stellarator

Waves in plasmas

• Importance of plasma waves

• Mathematical techniques (linearisation, Fourier transform)

• Group and phase velocities

• Ideal MHD waves

– shear Alfvén
– compressional Alfvén and magnetosonic waves
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1 Magnetic confinement

1.1 The tokamak

Axi-symmetric torus, large toroidal magnetic field, small poloidal magnetic field, large pres-
sure. Four main features:

1. TF coils.

2. OH transformer (→ current for equilibrium, heating).

3. Vertical field system (→ for toroidal force balance).

4. Shaping coils (→ to improve MHD stability and alleviate plasma-wall interactions).

1.2 The stellarator

Rotational transform from external coils only.

• No need for plasma current.

• Steady-state.

⇒ See viewgraphs for a qualitative discussion.

2 Waves in plasmas

All plasma particles are "sources" for Maxwell’s equations. Therefore most dynamical pro-
cesses in plasmas are related to electromagnetic waves and oscillations. Waves are used to
heat plasmas, and to drive current non–inductively. Another example of the importance of
waves is the role that microscopic electromagnetic waves and instabilities play in producing
transport of particles and energy in plasmas well above the levels due to collisional effects.

2.1 Mathematical technique

We will use normal mode (or plane wave) analysis. This corresponds to considering all
quantities in Fourier space, using the Fourier transform defined for any quantity g as

g̃(k, ω) =
1

(2π)4

∫
d3x

∫
dt g(x, t)e−i(k·x−ωt), (2.1)

with the inverse transform given by

g(x, t) =

∫
d3k

∫
dω g̃(k, ω)e i(k·x−ωt). (2.2)

This will lead to complex quantities. Naturally, all physical quantities are real, and we will
need to consider the real part at the end of all calculations.
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The Fourier transformation is a linear operation. Its use comes from the fact that by using
it we can split a complicated problem into small pieces, solve it for these small pieces, and
combine the pieces together to form the complete solution. This implies that the system of
equations to be solved is linear.

When the system of equations to be solved is non-linear, we linearise it considering small per-
turbations to an existing equilibrium. Take for example the continuity equation (a differential
equation) for the mass density ρ and the fluid velocity u:

∂ρ

∂t
+∇ · (ρu) = 0, (2.3)

where ρ ≡ ρ(x, t) and u ≡ u(x, t).

1. Choose an equilibrium → no time dependence → steady state:

ρ0(x) = ρ0 (uniform equilibrium), u0(x) = 0 (static equilibrium) (2.4)

2. Consider small perturbations to this equilibrium

ρ = ρ0 + ρ1(x, t),
∣∣∣ρ1
ρ0

∣∣∣≪ 1 (expansion parameter) (2.5)

3. Linearise by retaining first order terms only to get the linearised continuity equation

∂(ρ0 + ρ1)

∂t
+ ∇ ·

(ρ0 + ρ1)( u0︸︷︷︸
=0

+u1)

 = 0
∂ρ0
∂t︸︷︷︸

Order 0; = 0 by definition

+
∂ρ1
∂t︸︷︷︸

Order 1

+ ∇ · (ρ0u1)︸ ︷︷ ︸
Order 1 and ρ0=cte

+ ∇ · (ρ1u1)︸ ︷︷ ︸
Order 2; neglected

= 0

∂ρ1
∂t

+ ρ0∇ · u1 = 0. (2.6)

4. Now we consider normal modes, i.e. we consider the perturbed quantities as Fourier
transforms:

ρ1(x, t) =

∫
d3k

∫
dω ρ̃1(k, ω)e

i(k·x−ωt) (2.7)

and the same for u1. Thus

∂

∂t

{∫
d3k

∫
dω ρ̃1(k, ω)e

i(k·x−ωt)
}

+ ρ0∇ ·
{∫
d3k

∫
dω ũ1(k, ω)e

i(k·x−ωt)
}
= 0

⇒
∫
d3k

∫
dω

[
−iωρ̃1(k, ω)

]
e i(k·x−ωt)

+ ρ0

∫
d3k

∫
dω

[
ik · ũ1(k, ω)

]
e i(k·x−ωt) = 0. (2.8)

In general we can make the following formal substitutions:

∇ → ik and
∂

∂t
→ −iω. (2.9)
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In our example the linearised continuity equation becomes in Fourier space an algebraic
equation:

− iωρ̃1 + iρ0k · ũ1 = 0. (2.10)

In the following we will drop the tilde symbol to simplify the notation.
Note that it is important to refer to the equilibrium, with respect to which the linearisation
is done.

2.2 Phase and group velocities

Phase velocity

vph =
ω

k

k

k
. (2.11)

It can be |vph| > c , as vph does not carry information.

Group velocity

vg =
∂ω

∂k
. (2.12)

It cannot be |vg| > c , as vg does carry information.

2.3 Ideal MHD waves

The ideal MHD system can be reduced by combining its equations, obtaining

∂ρ

∂t
+∇ · (ρu) = 0 ρ

du
dt
= −∇p +

1

µ0
(∇× B)× B (2.13)

∂B

∂t
= ∇× (u× B)

d
dt
(pρ−γ) = 0 (see footnote1) (2.14)

This is a system of 8 equations with 8 unknowns: ρ, p, u, B. We now consider small
perturbations to a uniform and static (no flow) equilibrium

B(x, t) = B0 + B1(x, t) u(x, t) = u1(x, t) (2.15)

ρ(x, t) = ρ0 + ρ1(x, t) p(x, t) = p0 + p1(x, t) (2.16)

and linearize the original system of equations with respect to the equilibrium

∂ρ1
∂t
+ ρ0∇ · u1 = 0 ρ0

∂u1
∂t
= −∇p1 +

1

µ0
(∇× B1)× B0 (2.17)

∂B1
∂t
= ∇× (u1 × B0) p1 =

γp0
ρ0
ρ1 ≡ c2s ρ1 (see footnote2) (2.18)

1Rewriting the continuity equation as
dρ
dt
= −ρ∇ · u, we have another form of the equation of state:

dp
dt
+ γp∇ · u = 0.
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Here cs ≡
√
γp0/ρ0 is the sound speed . After elimination of p1 and Fourier transformation

this becomes

−ωρ1 + ρ0k · u1 = 0 (2.19)

−ωρ0u1 = −kρ1c2s +
1

µ0
(k× B1)× B0 (2.20)

−ωB1 = k× (u1 × B0) (2.21)

The shear Alfvén wave z

y

x

θ B
0

k

Figure 1: Notation for the
study of MHD waves.

Without loss of generality we can choose B0 = B0ẑ and
ky = 0 (see figure 1). Let us now consider the particular
case of a transverse wave u1x = u1z = 0, i.e.

k = (kx , 0, kz) (2.22)

u1 = (0, u1y , 0) (2.23)

We will treat the case u1x ̸= 0 ̸= u1z later.

Eq.(2.19) gives

 kx0
kz

 ·
 0

u1y
0

 = 0
Therefore ρ1 = 0, i.e. there is no variation of the mass density and we can conclude that
the wave is of non–compressional type.

The component along the y -axis of eq.(2.20) becomes

ωρ0u1y = −
1

µ0

[
(k× B1)× B0

]
y
= −

1

µ0

∣∣∣∣∣∣
x̂ ŷ ẑ

(k× B1)x (k× B1)y (k× B1)z
0 0 B0

∣∣∣∣∣∣
y

=

=
B0
µ0
(k× B1)x =

B0
µ0

∣∣∣∣∣∣
x̂ ŷ ẑ

kx 0 kz
B1x B1y B1z

∣∣∣∣∣∣
x

= −
B0
µ0
kzB1y

Eq.(2.21) gives

− ωB1y =
[
k× (u1 × B0)

]
y
=

[
k× x̂Bou1y

]
y
= B0kzu1y (2.24)

2From eq.(2.14) and eq.(2.16) we have (p0 + p1)(ρ0 + ρ1)−γ = p0ρ−γ0 ⇒ (p0 + p1)(1− γ
ρ1
ρ0
) = p0. At

the ’zero’ order (i.e. neglecting all the perturbation terms labelled as ′1′) we simply have p0 ≡ p0, while at
the first order we obtain p1 = γp0

ρ1
ρ0

.
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Then the system of eq.(2.19), eq.(2.20) and eq.(2.21) can be written as:

ρ1 = 0, (2.25)

ωρ0u1y +
kzB0
µ0
B1y = 0, (2.26)

kzB0u1y + ωB1y = 0, (2.27)

where eq.(2.26) and eq.(2.27) can be written as a homogenous linear system

A ·
(
u1y
B1y

)
= 0, where A =

(
ωρ0

kzB0
µ0

kzB0 ω

)
. (2.28)

To have a non–trivial solution (u1y ̸= 0 ̸= B1y ), we must have detA = 0. Thus, we obtain
the following dispersion relation

ω2 =
B20
ρ0µ0

k2z ≡ c2Ak2z = c2Ak2 cos2 θ, (2.29)

where cA ≡ B0/
√
µ0ρ0 is the Alfvén speed . Typical values are

Magnetosphere:

B ∼ 5× 10−8 T
n ∼ 106 m−3

}
⇒ cA ∼

5× 10−8√
1.7× 10−27 · 106 · 4π · 10−7

∼ 106 m/s.

Tokamak:

B ∼ 3 T
n ∼ 1020 m−3

}
⇒ cA ∼

3√
1.7× 10−27 · 1020 · 4π · 10−7

∼ 6× 106 m/s.

The solution given by eq.(2.29) is called shear Alfvén wave or non–compressional Alfvén
wave, as there is no density perturbation:

ρ1 =
k · u1
ω
= 0, (2.30)

This is different from sound waves, for example. Note that

• The velocity of α particles born with energies 3.5 MeV is > cA, so the α’s become
resonant3 with Alfvén waves during slowing down in a fusion reactor.

• Alfvén waves are equivalent to waves on a string with tension S and mass per unit
length M

M
∂2y

∂t2
= S
∂2y

∂z2
=⇒ ω2 =

S

M
k2z (2.31)

In the exercise you will show the analogy between a wave travelling along a magnetic
field line and a chord.

3As we will see later in the kinetic model, the condition vparticle ∼ vph makes it possible that a strong
interaction between waves and particles with exchange of energy may occur. This may lead to instabilities,
and the particle motion may be affected by the wave.
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The compressional Alfvén waves (fast waves) and the magneto–sonic waves

Now we consider the other case u1x ̸= 0, u1y = 0, u1z ̸= 0, where the perturbation has a
longitudinal component. Choosing B1y = 0 we get with our previous choices B0 = B0ez and
ky = 0 from eq.(2.21)

B1 =
u1xB0
ω
(k× ŷ). (2.32)

By inserting ρ1 from eq.(2.19) and B1 from eq.(2.32) in eq.(2.20), we get a linear system for
u1x and u1z , which again has a non–trivial solution only if the determinant of the coefficient
matrix vanishes. After some algebra one finds the dispersion relation

ω4 − ω2k2(c2A + c2s ) + k2z k2c2Ac2s = 0, (2.33)

which has the solutions

ω2 =
1

2

(
c2A + c

2
s

)
k2 ±

√
1

4

(
c2A + c

2
s

)2
k4 − c2Ac2s k2k2z . (2.34)

Note that ( cs
cA

)2
=
γp0
ρ0

µ0ρ0

B20
=
γ

2

p0
B20
2µ0

=
γ

2
β, (2.35)

The pressure ratio β is an important parameter to characterize a plasma4. For many plasmas
of interest we have β ≪ 1, so cs ≪ cA. In this limit the “+” branch of eq.(2.34) becomes

ω2 ≃ k2c2A. (2.36)

This solution is called fast wave or compressional Alfvén wave5. For the “−” branch we find
the so-called slow wave or magneto–sonic wave

ω2 ≃ c2s k2z = k2c2s cos2 θ. (2.37)

These are all possible modes of oscillation that an (unbounded) “MHD plasma” can sustain.
As we relax the assumptions that lead to the MHD model many other modes appear, for
example separating ions and electrons in their oscillatory motion. To describe these modes
we need a more detailed plasma model, as the multi–fluid or the kinetic models.

4B20/2µ0 is often referred to as “magnetic pressure”.
5ρ1 ̸= 0←→ ∇ · u1 ̸= 0
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The Tokamak



Main features of Tokamaks

Axi-symmetric torus, large toroidal magnetic field, small poloidal 
magnetic field, large pressure

Four main features/components
Toroidal field coils

main confinement field

‘Ohmic’ transformer
current for equilibrium, heating

Vertical field system
toroidal force balance, contrasts hoop force

Shaping coils
to improve MHD stability and alleviate plasma-wall interactions



Plasma equilibrium j´B = Ñp
Nested magnetic surfaces on 
which p is constant and current lies



Plasma equilibrium j´B = Ñp
Nested magnetic surfaces on 
which p is constant and current lies

Ex. of TCV plasma evolution
q=10

q=2



Plasma equilibrium j´B = Ñp
Nested magnetic surfaces on 
which p is constant and current lies

Tokamak equilibrium characterised by
Safety factor q  = toroidal turns / poloidal 
turns (pitch of field lines)
Normalised pressure b = nT/(B2/2µ0)

q=10

q=2



Plasma stability 

Stability
Destabilising: gradients of current and pressure
Stabilising: B-field line bending and compression

Instabilities
Ideal (h=0): fast, no change in B-field topology
Resistive (h¹0): slower, possibility of feedback control, 
change in B-field topology (magnetic islands)



MHD stability imposes limits on 
optimisation of fusion parameters

Current limit
Limits energy confinement time

tE µ 1/q~Ip for fixed B-field
Can be improved by shaping the plasma

Limit in normalised pressure b µ nT/B2
Limits fusion power for given B (cost!)

Pfus µ b2B4

Can be improved by shaping the plasma
Density limit

Limits fusion power
Pfus µ n2ásvñ

Can be improved by peaked radial profiles



Ideal plasma stability

Ideal limit in b and current 
is generally understood

The need to optimise 
fusion power (Pfus µ b2 ) 
pushes operation close to 
limits

bN=b/(I/aB)=3.5 

b

[%
]

Violation of linear stability results in 
rapid loss of plasma: disruptions

Toroidal E-field can lead to runaway electrons, damaging wall
Plasma currents intercepted by conducting surfaces and fast 
variation of flux lead to large thermal loads and e.m. forces



A TCV tokamak discharge



Tokamak physics challenges

Large power density and gradients (10MW/m3), 
anisotropy, no thermal equilibrium

Macro-instabilities and relaxation processes
solar flares, substorms

Dual fluid/particle nature
Wave-particle interaction (resonant, nonlinear)

coronal heating

Turbulent medium
Non-collisional transport and losses 

accretion disks

Plasma-neutral transition, wall interaction
plasma manufacturing

Huge range in temporal (10-10à105 s) and spatial scales (10-6à104 m)



Tokamaks around the world

~40 tokamaks in operation or under construction (India, Korea, China) 

Europe: ~10

Japan: ~5

Russia: ~5

USA: 3

Others: 10



Tokamak à Configuration Variable

R = 0.9m;  Ip≤1MA;  BT≤1.54T;  0.9<k<2.8;   -0.8<d<1 



Unique TCV feature: flexible plasma shapes



Unique TCV feature: 
EC heating and current drive systems

Second harmonic (X2)

X3

X2
X2

Plasma temperatures up to 12keV = 100 millions degrees K

Third harmonic (X3)



To improve plasma performance up to reactor relevant 
pressures and investigate burning plasma physics

16

TCV heating upgrades (up to 6.5MW)

Neutral Beam Heating
1MW 30keV + 1MW 50keV 

Electron Cyclotron Heating - Gyrotrons
2x 0.75MW / 83GHz 
2x 1MW / 84&126GHz

Vice Presidency
for Research

DNBI

NB
I-1

NB
I-2



Tokamak vs. Stellarator



W7-X stellarator in Germany



Record triple product  - ntET

Tokamak (JT60, Japan, 1996)
1.5×1021 keV s m−3

Stellarator (W7-X, Germany, 2018)
6.4×1019 keV s m-3
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