Stellar orbits

4th part

Outlines

The third integral in axisymmetric potential

Orbits in planar non-axisymmetric potential

- Surface of sections
 - energy dependency
 - flattening dependency
- Integrals of motions

Orbits in planar non-axisymmetric rotating potential

- The Jacobi integral
- Lagrange points
- Orbits around Lagrange points
- Orbits not confined to Lagrange points

Weak bars

- The Lindblad resonances
- Orbit families in realistic bars

Stellar Orbits

The third integral in axisymmetric potentials

Surfaces of section

Can we visualize the phase phase and check if an additional integral of motion exists ?

<u>Idea</u> :

We study the orbits in the meridional plane

- 4-D 4 indep. variables (R, z, \dot{R}, \dot{z})
- Energy E

- \rightarrow 3-D 3 indep. variables (R, z, \dot{R})
- Drawing a 3-D phase space is still not easy. Instead, we draw slices of the phase space. We plot only phase space points that:

Surfaces of section

Examples

Logarithmic potential

$$\Phi_{\log}(R,z) = \frac{1}{2}V_0^2 \ln\left(R_c^2 + R^2 + \frac{z^2}{q^2}\right)$$

Effective Potential

./mapping-Rz.py --V0 1. --Rc 0.0 --p 0.9 --Lz 0.2 -E -0.8 --plotpotential

Invariant curves : Third Integral

./mapping-Rz.py --V0 1. --Rc 0.0 --p 0.9 --Lz 0.2 -E -0.8 --norbits 30 --nlaps 1000

Invariant curves : Third Integral

<u>Zero velocity curve</u> : curve defined by $\dot{z} = 0$

 $\dot{R}(R) = \pm \sqrt{2 \left[E - \Phi_{\text{eff}}(R, z = 0) \right]}$

The Third Integral I	(I is in general non analytical)
Spherical systems : II	= L is conserved
Nearly spherical potential :	L is nearly an integral = I?
What is the curve in the Poir	caré map that satisfies L = che?
in cylindrical coordinates	$L^{2} = 2^{2}R^{2} + L^{2}_{2} \qquad (2=0)$
	$z^{2} = \frac{1}{R^{2}} (L^{2} - L_{7}^{2})$
Energy conservation	$E = \frac{1}{2}R^{2} + \frac{1}{2}t^{2} + \oint_{\text{off}}(R, \circ)$
	$= \frac{1}{2}R^{2} + \frac{1}{2R^{2}}(L^{2} - L^{2}_{7}) + \phi_{\text{eff}}(R, 0)$
$\dot{R} = \frac{1}{\sqrt{2(E - \phi_{dt}(R, 0)) - \frac{1}{2R^2}(L^2 - L_2^2)}}$	

Invariant curves : Third Integral

green : contours of constant total angular momentum

./mapping-Rz.py --V0 1. --Rc 0.0 --p 0.9 --Lz 0.2 -E -0.8 --norbits 15 --nlaps 100 --add_IL

Stellar Orbits

Orbits in planar non-axisymmetric potentials

NGC 1132, a giant cD elliptical galaxy

Credit : HST NASA/ESA

NGC 1300 SBb

Surfaces of section (in planar potentials)

```
Can we visualize the phase phase and check if an additional integral of motion exists ?
```

<u>Idea</u> :

We study the orbits in the plane z=0

- 4-D 4 indep. variables (x,y,\dot{x},\dot{y})
- Energy E

- \rightarrow 3-D 3 indep. variables (x, y, \dot{x})
- Drawing a 3-D phase space is still not easy. Instead, we draw slices of the phase space. We plot only phase space points that:

Surfaces of section (in planar potentials)

- A point in the surface of section (for a given E) defines an orbit as the three independent variables $(x, \dot{x}, y = 0)$ are defined.
- Even if orbits have the same energy, they will never intersect in the plane.
- Zero velocity curve : curve defined by $\dot{y} = 0$

$$E = \frac{1}{2}\dot{x}^{2} + \frac{1}{2}\dot{y}^{2} + \Phi(x, y = 0) \qquad \Rightarrow \qquad \dot{x} \leqslant \pm \sqrt{2\left[E - \Phi(x, y = 0)\right]}$$

$$\dot{x}(x) = \pm \sqrt{2\left[E - \Phi(x, y = 0)\right]} \qquad \text{defines the accessible region of the phase space}$$

$$\dot{x}$$

Bar model : Logarithmic potential: Vo=1 Rc=0.13 q=0.8)

$$\Phi_{\log}(x,y) = \frac{1}{2}V_0^2 \ln\left(R_c^2 + x^2 + \left(\frac{y}{q}\right)^2\right)$$

Orbits in planar non-axisymmetric static potential

Model : logarithmic potential

$$\phi(x,y) = \frac{1}{2} V_o^2 \ln \left(R_c + x^2 + \frac{y^2}{q^2} \right)$$

q: flattening parameter (equipotenhal accis ratio)

Motions for R << Rc

$$\phi(x,y) \stackrel{\sim}{=} \phi(o,o) + \frac{\partial \phi}{\partial x} \Big|_{q_0} x + \frac{\partial \phi}{\partial y} \Big|_{q_0} y + \frac{i}{2} \frac{\partial^2 \phi}{\partial x^2} \Big|_{q_0} x^2 + \frac{i}{2} \frac{\partial^2 \phi}{\partial y^2} \Big|_{q_0} y^2$$

 $\begin{aligned} \ddot{x} &= -\frac{\partial \phi}{\partial x} \\ \ddot{y} &= -\frac{\partial \phi}{\partial x} \\ \dot{y} &= -\frac{\partial \phi}{\partial x} \\ y &= -\frac{V_0^2}{R_c^2} \\ \dot{y} &= -\frac{V_0^2}{R_c^2} \\ \dot{y} &= -\frac{V_0^2}{q^2 R_c^2} \\ \dot{y} &= -\frac{V_0^2}{q^2 R_c^2} \end{aligned}$

2 decoupled harmonic oscillators with different trequencies

$$w_{g} = \frac{1}{q} w_{z} \quad (q < 1)$$

if $q = \frac{n}{m}$ $n, m \in \mathbb{N}$
= p closed orbit

Integrals of motions (Hamiltonians)

$$H_{x} = \frac{1}{2}x^{2} + \frac{1}{2}w_{x}^{2}x^{2}$$

 $H_{5} = \frac{1}{2}\dot{5}^{2} + \frac{1}{2}w_{5}^{2}5^{2}$

Potential and energy

R<<R_c

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --plotpotential ./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.965 --plotpotential

The flattening – frequency dependency q = 1

./mapping.py --V0 1. --Rc 0.14 --q 1.0 -E -1.9661 --x 0.0006

The flattening – frequency dependency q = 0.9

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.9661 --x 0.0006

The flattening – frequency dependency q = 0.25

./mapping.py --V0 1. --Rc 0.14 --q 0.25 -E -1.9661 --x 0.0006

The flattening – frequency dependency q = 0.62388462341

./mapping.py --V0 1. --Rc 0.14 --q 0.62388462341 -E -1.9661 --x 0.0006 --nlaps 200

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.9661 --norbits 50

small x, Y-elongated orbits (box orbit) q = 0.9

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.9661 --x 0.00002

large x, X-elongated orbits (box orbit) q = 0.9

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.9661 --x 000709

Increasing energy : perturbed harmonic oscillator (coupling terms)

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.96

Increasing energy : perturbed harmonic oscillator

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.96 --x 0.01

small x, Y-elongated orbits (box orbit)

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.96 --x 0.001 --nlaps 10

large x, X-elongated orbits (box orbit)

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.96 --x 0.0154 --nlaps 10

$$\phi(x,y) = \frac{1}{2} V_0^2 \ln \left(R_c + x^2 + \frac{y^2}{q^2} \right)$$

$$\stackrel{\sim}{=} \frac{1}{2} V_0^2 \ln \left(x^2 + \frac{y^2}{q^2} \right) \sim \frac{1}{2} V_0^2 \ln \left(R^2 \right)$$

$$q = 1$$

Orbit families

(a) box orbits (disturbed 2D harmonic ascillator)

$$V_{1/1} = V_{1/2} \cong 0$$

$$if V_{2} = 0 : radial orbit(L_{2}=0)$$
(a) box orbits

$$V_{1/2} = V_{2} \cong V_{2}$$

$$V_{1} = V_{2} \equiv V_{2}$$

$$if V_{2} = V_{2} : circular orbit$$

$$q = 1$$

Potential and energy

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --plotpotential

Phase space

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --norbits 100 ./mapping.py --V0 1. --Rc 0.14 --q 1.0 -E -0.337 --norbits 100

Box orbits

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --x 0.7
Box orbits

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --x 0.67

Box orbits

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --x 0.65

Box orbits

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --x 0.63

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --x 0.62

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --x 0.55

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --x 0.45

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --x 0.374

Box orbits elongated towards the y axis

Integral of motions ?

Integral of motions ?

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --norbits 18 ./mapping.py --V0 1. --Rc 0.14 --q 1.0 -E -0.337 --norbits 18

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --norbits 18 --add_ILz ./mapping.py --V0 1. --Rc 0.14 --q 1.0 -E -0.337 --norbits 18 --add_ILz

The Hotion parallel to the long axis
$$(y = \dot{y} = o)$$

$$H_{\infty} = \frac{1}{2}\dot{x}^{2} + \phi(x, y = o) = E_{\infty} \quad (harmonic oscillator)$$

$$\dot{x} = -\sqrt{2(E_{\infty} - \phi(x, y = o))}$$

 H_x

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --x 0.69 --nlaps 1000 --add_Ix ./mapping.py --V0 1. --Rc 0.14 --q 1.0 -E -0.337 --x 0.69 --nlaps 1000 --add_Ix

$R \sim R_c$

Family decoupling

from low energy 1 family

to

high energy 2 famillies

E = -1.8

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.80 --norbits 50

$$E = -1.75$$

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.75 --norbits 50

bifurcation E = -1.70

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1.70 --norbits 50

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -1 --norbits 50

$$E = -1.75$$

Evolution with the flattening

keeping the nergy fixed

q = 1.0

./mapping.py --V0 1. --Rc 0.14 --q 1.0 -E -0.337 --norbits 50 --nlaps 200

./mapping.py --V0 1. --Rc 0.14 --q 0.9 -E -0.337 --norbits 50 --nlaps 200

./mapping.py --V0 1. --Rc 0.14 --q 0.7 -E -0.337 --norbits 50 --nlaps 200

./mapping.py --V0 1. --Rc 0.14 --q 0.5 -E -0.337 --norbits 100 --nlaps 200

./mapping.py --V0 1. --Rc 0.14 --q 0.5 -E -0.337 --norbits 50 --nlaps 200 --x 0.3 --vx -0.6

./mapping.py --V0 1. --Rc 0.14 --q 0.5 -E -0.337 --norbits 50 --nlaps 200 --x 0.3 --vx -0.6

Conclusions

Many 2D bared potential have orbital structures like the logarithmic potential:

- Most orbits respect a 2nd integral (L_z or H_x)
- 2 types of orbits:
 - Loop : fixed sense of rotation - never reach the centre
 - Box : no fixed sense of rotation - many reach the centre

Loop orbits dominate when the axis ratio of of the potential is nearly unity. Box orbits dominate instead.

Stellar Orbits

Orbits in planar non-axisymmetric rotating potentials

$$\phi(\theta, t) \qquad \begin{cases} \theta \rightarrow L_2 \neq de \\ f = F + de \end{cases}$$

Assume a stahic rotation of the bar at constant angular trequency Sb

$$\left(\vec{x}^{T}, \vec{x}^{T} \right) - \left(\vec{x}, \vec{x} \right)$$

inertial
frame
 R^{T} rotating
frame
 R

Posihians

$$\tilde{x} = R_{r,t} \tilde{x}^{T}$$

Potenhial

 $\phi(\vec{x}^{\bar{i}},t) \equiv \phi(\vec{x}-R_{er}^{\bar{i}},t=0) = \phi_{o}(\bar{x})$

$$\phi(\vec{x}^{\tilde{i}}, t) = \phi_o(\bar{x})$$

Velocities

$$\vec{x} = \vec{x} + \vec{x} \times \vec{x}$$

In the inertial frame RI

$$\mathcal{L}(\vec{x}, \vec{x}) = \frac{1}{2} \vec{x}^{T^2} - \phi^{T}(\vec{x}^{T}, t)$$

In the rotating frame R

$$\cdot \quad \frac{1}{2} \quad \widetilde{x}^{12} \qquad - \cdot \quad \frac{1}{2} \left(\vec{x} + \vec{x}_{b} \times \vec{x} \right)^{2}$$

• $\phi^{\mathrm{I}}(\tilde{\mathbf{x}}^{\mathrm{I}},t) \rightarrow \phi(\mathbb{R}_{\mathrm{RF}}^{\mathrm{I}}\tilde{\mathbf{x}},t=0) = \phi_{\mathrm{o}}(\tilde{\mathbf{x}})$

Momentum

$$\vec{P} = \frac{\partial \hat{Z}}{\partial \vec{z}} = \vec{z} + \vec{x} + \vec{z}$$

Namiltonian

$$H_{s} = \vec{p} \cdot \vec{z} - \hat{\chi}(\vec{z}, \vec{z})$$

$$H_{3}(\vec{x},\vec{p}) = \frac{1}{2}\vec{p}^{2} - \vec{\Omega}(\vec{p}\times\vec{x}) + \phi(\vec{x})$$

H₃ has no explicit time dependency
=>
$$H_3 = E_3 = che$$

Jacob: integral

Equations of motion from Hamilton's equations

$$H_{3} = \frac{1}{2} \vec{p}^{2} - \vec{\Omega} \cdot (\vec{p} \times \vec{\omega}) + \phi(\vec{\omega})$$

$$\vec{x} = \frac{\partial H_3}{\partial \vec{p}} = \vec{p} - \vec{x} \times \vec{x}$$
$$\vec{p} = -\frac{\partial H_3}{\partial \vec{x}} = -\vec{\nabla} \phi - \vec{R} \times \vec{p}$$

Effective potential split the kinetic term in the Lagrangian

$$\begin{aligned}
\hat{g}(\vec{x},\vec{x}) &= \frac{1}{2} \left(\vec{x} + \vec{x}_{5} \times \vec{x} \right)^{2} - \phi_{0}(\vec{x}) \\
&= \frac{1}{2} \vec{x}^{2} + \vec{x} \left(\vec{x}_{5} \times \vec{x} \right) - \frac{\phi_{0}(\vec{x}) + \frac{1}{2} \left(\vec{x}_{5} \times \vec{x} \right)^{2}}{depends only on \vec{x}} \\
\end{aligned}$$

$$\begin{aligned}
\phi_{\text{eff}}(\vec{x}) &:= \phi(\vec{x}) - \frac{1}{2} \left(-\vec{x} \times \vec{x} \right)^{2} \\
&= \phi(\vec{x}) - \frac{1}{2} \left(-\vec{x} \times \vec{x} \right)^{2} \\
&= \phi(\vec{x}) - \frac{1}{2} \left(\vec{x} \cdot \vec{x}^{2} + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x}) + \frac{1}{2} \left(\vec{x} \cdot \vec{x} \right)^{2} \\
&= \phi(\vec{x$$

Note: $\phi(\bar{x}) = -\frac{1}{2} - \bar{x}^2 \bar{x}^2 + \frac{1}{2} (\bar{x} \cdot \bar{x})^2$

$$\frac{J}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial \vec{x}} = 0$$

$$\vec{x} = - \vec{\nabla} \phi_{eff}(\vec{x}) - 2(\mathcal{R} \times \vec{x})$$

$$\vec{x} = -\vec{\nabla}\phi(\vec{x}) + \underline{x}^{2}\vec{x} - \underline{x}(\vec{x}\cdot\vec{x}) - 2(\underline{x}\times\vec{x})$$

$$\underbrace{centrifugal \ force} \qquad \underbrace{centrifugal \ force} \qquad$$

stationary points (corotation radius : centrifugal force = gravity)

r

r

r

Stellar Orbits

Orbits around Lagrange points

Stability of orbits around Lagrange points
Expand the effective potential in Taylor serie around the
Lagrange points
$$(x_{L}, y_{L})$$

 $\phi_{eff}(x, y) \cong \phi_{eff}(x_{L}, y_{L}) + \frac{\partial \phi_{eff}}{\partial x}(x - x_{L}) + \frac{\partial \phi_{eff}}{\partial y}(y - y_{L})$
 $+ \frac{i}{2} \frac{\partial^{2} \phi_{eff}}{\partial x^{2}}(x - x_{L})^{2} + \frac{i}{2} \frac{\partial^{2} \phi_{eff}}{\partial y^{2}}(y - y_{L})^{2} + \frac{i}{2} \frac{\partial^{2} \phi_{eff}}{\partial x \partial y}(x - x_{L})(y - y_{L})$
by symmetry of the bar, if it is aligned with x

Now we define $\vec{\xi} := x - x_L$ $p_{xx} := \frac{\partial^2 \phi_{eff}}{\partial x^2}$ $\gamma := \gamma - \gamma_L$ $p_{yy} := \frac{\partial^2 \phi_{eff}}{\partial g^2}$

$$\phi_{eff}(3,7) = \phi_{eff}(0,0) + \frac{1}{2}\phi_{xx} 3^{2} + \frac{1}{2}\phi_{55} 7^{2}$$

Equations of motions
$$\vec{x} = -\vec{\nabla}\phi_{\text{eff}} - 2(\vec{x} \times \vec{x})$$

in the plane $z=0$ assuming $\vec{x} = \begin{pmatrix} 0 \\ 0 \\ x \end{pmatrix}$

$$\int \vec{x} = -\frac{\partial \phi_{\text{eff}}}{\partial x} + 2 \cdot 2 \cdot 3$$

$$\int \vec{y} = -\frac{\partial \phi_{\text{eff}}}{\partial y} - 2 \cdot 2 \cdot 2 \cdot x$$

$$\int \vec{y} = -2 \cdot 2 \cdot 3 - \phi_{\text{ss}} \cdot 5$$

$$\int \vec{y} = -2 \cdot 2 \cdot 3 - \phi_{\text{ss}} \cdot 7$$
We assume solutions of the form
$$\int f(t) = -\frac{1}{2} \cdot e^{-\frac{1}{2}t}$$

$$\int \xi(t) = X e \qquad X, Y, \lambda \in \mathbb{C}$$

$$\int \eta(t) = Y e^{\lambda t} \qquad X, Y, \lambda \in \mathbb{C}$$

$$\begin{cases} \left(\lambda^{2} + \phi_{xx}\right) \times - \left(2\lambda \Lambda\right) & \forall = 0 \\ \left(2\lambda \Omega\right) & \times + \left(\lambda^{2} + \phi_{33}\right) & \forall = 0 \\ \left(2\lambda \Omega\right) & \times + \left(\lambda^{2} + \phi_{33}\right) & \begin{pmatrix} X \\ Y \end{pmatrix} = 0 \\ \\ \frac{\lambda^{2} + \phi_{xx}}{2\lambda \Omega} & \lambda^{2} + \phi_{33} & \begin{pmatrix} X \\ Y \end{pmatrix} = 0 \\ \\ \frac{\lambda^{2} + \lambda^{2} + \phi_{33}}{2\lambda^{2} + \phi_{33}} & \frac{\lambda^{2} + \phi_{33}}{2\lambda^{2} + \phi_{33}} & \frac{\lambda^{2} + \phi_{33}}{2\lambda^{2} + \phi_{33}} \\ \\ Non trivial solutions (i.e \times \pm 0, \forall \pm 0) & only if Det(M) = 0 \\ \\ Det M = -\lambda^{4} + \lambda^{2} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{2} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{2} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{2} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{2} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{2} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{2} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{4} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{4} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{4} \left(\phi_{xx} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{4} \left(\phi_{xx} + \phi_{33} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{4} \left(\phi_{xx} + \phi_{33} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{4} \left(\phi_{xx} + \phi_{33} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} = 0 \\ \\ \frac{\lambda^{4} + \lambda^{4} \left(\phi_{xx} + \phi_{33} + \phi_{33} + 4\lambda^{2}\right) + \phi_{xx} \phi_{33} + \phi_{$$

Solutions
$$(4 \operatorname{roots}, \operatorname{two are coupled})$$

• if λ is a solution == - λ is a solution
• if λ is real $\begin{cases} \xi(t) = \chi e^{\lambda t} - \operatorname{exponential growth} \\ \eta(t) = \chi e^{\lambda t} - \operatorname{exponential growth} \\ - \operatorname{He star}$ leaves the Lagrange point
UNSTABLE
• if all λ are purely complexe $\lambda_{\lambda} = \operatorname{di} \quad \lambda_{2} = -\operatorname{di} \quad \operatorname{digs} \in \mathbb{R}$
 $\xi(t) = Re\left(\chi_{\lambda} e^{i\Delta t} + \chi_{2}' e^{-iAt} + \chi_{3}' e^{iBt} + \chi_{4}' e^{-iBt}\right)$
 $= \chi_{\lambda}' \cos(\Delta t) + \chi_{2}' \cos(-\Delta t) + \chi_{3}' \cos(Pt) + \chi_{4}' \cos(-Bt)$
 $= \chi_{\lambda} \cos(\Delta t) + \chi_{2} \cos(Bt)$

idem for $\eta(L)$, so we get $\begin{cases} \tilde{g}(F) = X_{r} \cos(aE) + X_{z} \cos(\beta E) \\ \gamma(F) = Y_{r} \cos(aE) + Y_{z} \cos(\beta E) \end{cases}$ STABLE with $\begin{cases} Y_n = \frac{\phi_{xx} - \lambda^2}{2RA} X_n = \frac{2RA}{\phi_{55} - \lambda^2} X_n \\ Y_2 = \frac{\phi_{xx} - \beta^2}{2RB} X_n = \frac{2RB}{\phi_{55} - \beta^2} X_2 \end{cases}$

Stellar Orbits

Orbits not confined to Lagrange points

Bar model : Logarithmic potential: Vo=01 Rc=0.1 q=0.8)

$$\Phi_{\log}(x,y) = \frac{1}{2}V_0^2 \ln\left(R_c^2 + x^2 + \left(\frac{y}{q}\right)^2\right) \qquad \qquad \Omega_{\rm p} \neq 0$$

Low energy orbits

$R \ll R_{\rm corot}$

Potential and energy

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 --plotpotential

Orbits around L_3

 $\Omega = 0$

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 0 -E -3.5

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -3 ./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 0 -E -3.5

.002 -0.001 0.000 0.001 ×

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -3 ./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -3 --x -0.014

Apparition of a periodic loop orbit (replace the radial orbit, perpandicular to the bar)

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -3 ./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -3 --x -0.004

Long axis (X) orbits (periodic) $\Omega = 1$

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -3 --x 0.03975

Apparition of a periodic loop orbit (replace the radial orbit, parallel to the bar)

Long axis (X) orbits (non periodic) $\Omega = 1$

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -3 --x 0.03

Increasing the energy

E = -2.8

E = -2.8

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.8 --norbits 50

$$E = -2.7$$

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.7 --norbits 50

$$E = -2.6$$

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.6 --norbits 50

E = -2.5

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5 --norbits 50

E = -2.5

x1 : prograde x4 : retrograde

Increasing the energy further

E = -1.4
E = -1.4

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -1.4 --norbits 50

$$E = -1.3$$

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -1.3 --norbits 50

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -1.2 --norbits 50

E = -1.2

Chaotic orbits

Chaotic orbits

Evolution of the x1 orbit with increasing energy

./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -2.5 --x 0.0766659 ./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -1.2 --x 0.315099 ./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -0.7 --x 0.590356 ./mapping.py --V0 1. --q 0.8 --Rc 0.03 --Omega 1 -E -0.55 --x 0.783882

Figure 3.18 A plot of the Jacobi constant E_J of closed orbits in $\Phi_L(q = 0.8, R_c = 0.03, \Omega_b = 1)$ against the value of y at which the orbit cuts the potential's short axis. The dotted curve shows the relation $\Phi_{eff}(0, y) = E_J$. The families of orbits x_1-x_4 are marked.

Stellar Orbits

Orbits in weak rotating bars

Objective

- Split a loop orbit in two parts:
 - a circular motion of a guiding center
 - oscillations around the guiding center

Orhils in weak rotating hars (placar potentials)
the bared potential rotations with a pattern speed As
Lagrangian :
$\mathcal{L}(\vec{x},\vec{z}) = \frac{1}{2}(\vec{z} + \vec{x}, \vec{z})^2 - \phi(\vec{z})$
In 2-D, with $\hat{R}_{5} = \hat{R}_{5} e_{7}$
$f(x, y, \dot{x}, \dot{y}) = \frac{1}{2}(\dot{x} - y \cdot e_b)^2 + \frac{1}{2}(\dot{y} + x \cdot R_b)^2 - \phi(x, y)$
In cylindrical coordinates
$\mathcal{L}(R,\varphi,\dot{R},\dot{\varphi}) = \frac{1}{2}\dot{R}^{2} + \frac{1}{2}(R(\dot{\varphi}+R_{b}))^{2} - \phi(R,\varphi)$

Equations of motion in cylindrical coordinates (Euler-Lagrange)

$$\begin{cases} \vec{R} = R(\dot{\varphi} + R_b)^2 - \frac{\partial \phi}{\partial R} \\ \frac{d}{dt}(R^2(\dot{\varphi} + R_b)) = -\frac{\partial \phi}{\partial \varphi} \end{cases}$$

Assumption s

$$(\widehat{P} \land Weak : \widehat{P}(R, \varphi) = \widehat{P}_{o}(R) + \widehat{P}_{a}(R, \varphi) \quad \frac{|\varphi_{a}|}{|\varphi_{o}|} \ll 1$$

$$(\widehat{P}_{a}(R, \varphi) = \widehat{P}_{b}(R) \cos(m\varphi) \qquad m : perturbation \qquad mode$$

$$(\widehat{P}_{a}(R, \varphi) = \widehat{P}_{b}(R) \cos(m\varphi) \qquad m : perturbation \qquad mode$$

$$(\widehat{P}_{a}(R, \varphi) = \widehat{P}_{b}(R) \cos(m\varphi) \qquad m : perturbation \qquad mode$$

The weakly-bared galaxy model

The weakly-bared galaxy model

The weakly-bared galaxy model

Assumption s

(2) The motion may be decomposed into two parts
1) circular motion
2) perturbation

$$\int R(t) = R_0(t) + R_A(t)$$
 $R_A \ll R_0$

$$q(t) = q_0(t) + q_1(t) \qquad q_n e q_0$$

Note

Radial motion

$$R_{n}(\varphi_{0}) = C_{n}cos\left(\frac{y_{0}}{g_{0}-h_{0}}+d\right) - \left[\frac{d\varphi_{0}}{dR} + \frac{2RA}{R(R-R_{0})}\right]_{R_{0}} \frac{cos(m-\varphi_{0})}{x^{2}-m^{2}(x_{0}-R_{0})^{2}}$$

$$C_{n}, d : arbitrarg constants$$

$$de_{0}: radial epicyle frequency$$

$$\dot{\varphi}_{n}(t) = -2 \mathcal{N}_{0} \frac{R_{n}}{R_{0}} - \frac{\phi_{b}(R_{0})}{R_{0}^{2}(\mathcal{P}_{0} - \mathcal{N}_{b})} \cos\left(m\left(\mathcal{P}_{0} - \mathcal{N}_{b}\right)t\right) + cte$$

Orbits in weak rotating hars (placer potentials)
• the bared potential robation with a pattern speed As

$$\frac{1}{2}\left(\vec{x} + \vec{x}_{s} \times \vec{x}\right)^{2} - \phi(\vec{x})$$
2D, with $\vec{x} = \vec{x}_{s}\vec{e}_{1}$
 $g(x, \vec{x}, 5, \vec{s}) = \frac{1}{2}(\vec{x} - 5\vec{x}_{s})^{2} + \frac{1}{2}(\vec{5} + 2\vec{x}_{s})^{2} - \phi(x)$

In cylindrical coordinates

$$L(\mathbf{R},\mathbf{n},\boldsymbol{\varphi},\boldsymbol{\varphi}) = \frac{1}{2}\mathbf{n}^{2} + \frac{1}{2}(\mathbf{R}(\boldsymbol{\varphi},\boldsymbol{\varphi}))^{2} - \boldsymbol{\varphi}(\mathbf{R},\boldsymbol{\varphi})$$

Equations of motion Euler - Lagrange
$$\frac{d}{dt} \frac{\partial L}{\partial n} = \frac{\partial R}{\partial R}$$

$$\frac{\partial}{\partial t} \frac{\partial f}{\partial k} = \frac{\partial}{\partial t} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right) = \frac{\partial}{\partial \varphi} \left(n^{2} (\dot{\varphi} + n_{1}) \right)$$

 $\psi^{I} = \Omega$ angular speed in the inertial trame $if \phi$ is arisymmetric. Ly conservation We assume a weak bor

$$\phi(R,\varphi) = \phi(R) + \phi(R,\varphi)$$
 with $|\frac{\phi}{\phi_0}| \ll 1$
cylindwcal perhitation
symmetry

Split the motion into two parts

$$\begin{cases}
R(L) = R_{+} + R_{+}(L) & R_{0} : radius of the juidity centur \\
\varphi(L) = \varphi_{0}(L) + \varphi_{1}(L) & Q_{1}(L) \\
\hline Equations of motion at first order t
\end{cases}$$

$$\phi(R_{+}, \varphi) \cong \phi_{-}(R_{0}) + \phi_{1}(R_{0}, \varphi) + \frac{\partial d_{1}}{\partial R_{0}}(R_{0}, L) + \frac{\partial d_{2}}{\partial R_{0}}(R_$$

$$\frac{\partial}{\partial t}\left(n^{2}\left(\dot{\varphi}+n_{1}\right)\right) = -\frac{\partial}{\partial \varphi}\phi$$

$$\frac{\partial}{\partial L} \left(\left(\dot{\varphi}_{0} + R_{s} \right) \left(R_{0}^{2} + 2R_{0} \right) \right) = 0$$

$$\left(R_{0}^{2} + 2R_{0} \right) \quad \frac{\partial}{\partial L} \left(\dot{\varphi}_{0} + R_{s} \right) = 0$$

$$\frac{\text{Interpretation}}{\text{Interpretation}} = \frac{R_{o}(\dot{q}_{o} + R_{b})^{2}}{\frac{\partial R_{o}}{\partial R_{o}}} = \frac{J_{o}}{\partial R_{o}} = \frac{J_{o}}$$

$$\vec{n} = R(\dot{q} \cdot R_{s})^{2} - \frac{\partial d}{\partial R} \longrightarrow$$

$$\dot{n}_{n} + n_{n} \left(\frac{\partial^{2} \phi_{0}}{\partial R^{2}} - \Lambda^{2} \right)_{R_{0}} - 2 n_{0} \dot{\gamma}_{n} R_{0} = - \frac{\partial \phi_{n}}{\partial R}_{R_{0}}$$

$$\frac{1}{dt}\left(n^{2}\left(\dot{\varphi}+n_{1}\right)\right) = -\frac{1}{dy}\phi$$

$$\frac{\dot{\eta}}{\eta_{n}} + 2R_{o}\frac{\dot{n}_{n}}{R_{o}} = -\frac{\dot{n}_{o}}{R_{o}^{2}}\left(\frac{\partial \dot{q}_{n}}{\partial \dot{q}_{n}}\right)_{n_{o}}$$

(1) Radial equation

$$R = R \left(\dot{q} \cdot R_{5} \right)^{2} - \frac{\partial d}{\partial R} \longrightarrow$$

$$\dot{\mathbf{n}}_{r} + n_{r} \left(\frac{\partial^{2} \phi_{o}}{\partial \mathbf{n}^{2}} - \mathcal{N}^{2} \right)_{\mathbf{R}_{o}} - 2 n_{o} \dot{\mathbf{y}}_{r} \mathcal{R}_{o} = - \frac{\partial \phi_{r}}{\partial \mathbf{R}}_{\mathbf{R}_{o}}^{\mathbf{R}_{o}}$$

$$\frac{d}{dt}\left(n^{2}\left(\dot{\varphi}+n_{1}\right)\right) = -\frac{2}{d\gamma}\frac{d}{d\gamma}$$

$$\ddot{q}_{n} + 2R_{o}\frac{\dot{n}_{n}}{R_{o}} = -\frac{f_{o}}{R_{o}^{2}}\left(\frac{\partial d_{o}}{\partial \varphi}\right)_{n_{o}}$$

We restrict to simple perturbations of the type

$$\frac{\phi_{i}(R, \varphi) = \phi_{b}(R) \cos(m\varphi)}{\operatorname{radial} \quad \operatorname{azimuthal}} \\
\frac{\varphi_{i}(R, \varphi) = \phi_{b}(R) \cos(m\varphi)}{\operatorname{radial} \quad \operatorname{azimuthal}} \\
\operatorname{radial} \quad \operatorname{azimuthal} \\
\operatorname{olependency} \quad \operatorname{dependency} \\
\operatorname{dependency} \quad \operatorname{dependency} \\
\operatorname{dependency} \quad \operatorname{dependency} \\
\operatorname{olependency} \quad \operatorname{dependency} \\
\operatorname{olependency} \quad \operatorname{dependency} \\
\operatorname{dependency} \quad \operatorname{dependency} \\
\operatorname{olependency} \quad \operatorname{dependency} \\
\operatorname{dependency} \quad \operatorname{dependency} \\
\operatorname{dependency} \quad \operatorname{dependency} \\
\operatorname{olependency} \quad \operatorname{dependency} \\
\operatorname{dependency} \operatorname{d$$

$$\dot{R}_{n} + R_{n} \left(\frac{\partial^{2} \phi_{0}}{\partial R^{2}} - \Lambda^{2} \right)_{R_{0}} - 2 R_{0} \dot{\phi}_{n} R_{0} = \frac{\partial \phi_{0}}{\partial R} \partial cos(m(\Lambda_{0} - \Lambda_{0})t)$$

$$\ddot{\Psi}_{n} + 2 R_{0} \frac{\dot{R}_{n}}{R_{0}} = \frac{m \phi_{0}(R_{0})}{R_{0}^{2}} sin(m(\Lambda_{0} - \Lambda_{0})t))$$

$$\dot{\varphi}_{r} = -2 \mathcal{N}_{o} \frac{R_{r}}{R_{o}} - \frac{\phi_{b}(R_{o})}{R_{o}} \cos\left(m\left(\mathcal{N}_{o}-\mathcal{N}_{b}\right)t\right) + de$$

$$R_{n} + \chi_{0}^{2}R_{n} = -\frac{d\phi_{0}}{dR} + \left[\frac{2\Omega\phi_{0}}{R(\Omega-\Omega_{0})}\right] \cos\left(m\left(\Omega_{0}-\Omega_{0}\right)t\right) + cte$$

with :

$$\mathcal{X}_{n}^{2} = \left(\frac{d^{2}\phi_{0}}{dR^{2}} + 3R^{2}\right)_{n} = \left(R \frac{d^{2}R^{2}}{dR} + 4R^{2}\right)_{R}$$

the radial epicycle trequency

General Solution (harmonic oscillator of freque de driver at freque m(Ro-Sis))

$$R_{n}(L) = C_{n} \cos(x_{0}t + L) - \left[\frac{d\varphi_{n}}{dR} + \frac{2R\varphi_{n}}{R(R-R_{n})}\right] \frac{\cos(m(\Lambda_{0}-\Lambda_{0})L)}{x^{2} - m^{2}(\Lambda_{0}-\Lambda_{0})^{2}}$$

$$R_{-}(4) = C_{n} \cos\left(\frac{x_{\cdot} \varphi_{\cdot}}{g_{\cdot} - h_{s}} + \lambda\right) - \left[\frac{d\varphi_{n}}{dR} + \frac{2RA_{\cdot}}{R(R-R_{\cdot})}\right]_{R_{0}} \frac{\cos(m \varphi_{0})}{x^{2} - m^{2}(R_{0} - R_{s})^{2}}$$

$$\frac{\text{Discussion}}{\text{R}_{n}(4_{n}) = C_{n}cos\left(\frac{y_{1},y_{2}}{R_{n}-A_{n}}+\lambda\right) - \left[\frac{dA}{dR} + \frac{2RA}{R(R-R_{n})}\right]_{R_{n}} \frac{cos(m y_{n})}{x_{n}^{2}-m^{2}(R_{n}-R_{n})^{2}}$$

(1) if
$$\phi_{5}(R) = o$$
 (no perforbation)
 $R_{n}(L) = C_{n} \cos(x_{o}t + L)$ = $x(L)$ radial oscillations
 $\dot{\phi}_{n}(L) = -2 R_{o} \frac{R_{n}(L)}{R_{o}}$ = $y(L)$ oscillations along
the orbit

(2) if
$$C_n = 0$$
 $\phi_b \neq 0$

$$R_n(q_n) = -\left[\frac{d\phi_n}{dR} + \frac{2R\phi_n}{R(R-R_n)}\right]_{R_n} \frac{\cos(m\phi_n)}{x^2 - m^2(x_n - R_n)^2}$$

$$= closed orb.1$$
(3) if $C_n \neq 0$ occillations around the closed orb.1
(same family) The orbit is not necessary dosed

ResonancesI two problematic terms11
$$R_{1} = R_{1}$$
 $R_{2} = R_{2}$ $R_{1} = R_{2}$ $R_{2} = R_{1}$ 1) $R_{2} = R_{2}$ $Corotalian$ we are at a radius where the
circular frequency is similar to the
pattern speed of the bar1) $R_{2} = R_{2}$ $Corotalian$ we are at a radius where the
circular frequency is similar to the
pattern speed of the bar2) $M(-R_{0} - R_{1}) = \pm X_{0}$ Lindblad resources2) $M(-R_{0} - R_{1}) = \pm X_{0}$ Lindblad resources $R_{1} = R_{2} = R \pm X_{0}$ Lindblad resources $R_{2} = R_{1} = R_{1} = R_{2} = R_{1} = R_{1} = R_{2} = R_{2} = R_{1} = R_{2} = R_{2} = R_{1} = R_{2} = R$

Disk : Miyamoto-Nagai Bulge : Plummer

Inner Lindblad resonnances (ILR1, ILR2)

$$\Omega_{\rm b} = \Omega - \kappa/2$$

Outer Lindblad resonnance (OLR)

$$\Omega_{\rm b} = \Omega + \kappa/2$$

Corotation (CR)

$$\Omega_{\rm b}=\Omega$$

x

x

x

x

x

x

x1 : prograde x4 : retrograde

The End