MCAA lecture 8
Recap: cutoff phenomenon

1. RW on $S=\{0,1\}^{d} S$ very large (prob $\frac{1}{d+1}$ to stay or to flip one bit)
Bands: $\frac{1}{2} \exp \left(-\frac{2 n}{d+v}\right) \leqslant \| P_{0}^{n}-\bar{\pi} U_{T V} \leqslant \frac{1}{2 \sqrt{\pi_{0}}} \cdot \exp \left(-\frac{2 n}{d+1}\right)$

Pf idea:
UR:

$$
\begin{aligned}
\left\|P_{0}^{n}-\pi\right\|_{T V} \leq & \frac{1}{2}\left(\sum_{z=0}^{\downarrow} \lambda_{z}^{2 n}\right)^{1 / 2} \ldots \\
& \sim 0 \quad \text { si } n \gg \frac{d \log d}{4}
\end{aligned}
$$

LB: $\| P_{0}^{n}-\pi U_{T V}=\max _{A C S}\left|P_{0}^{n}(A)-\pi(A)\right|$

$$
\geqslant\left|P_{0}^{n}(A)-\pi(A)\right| \quad \forall A \subset S
$$

Pick $A_{\beta}=\left\{x \in S:\left||x|-\frac{d}{2}\right| \leqslant \frac{\beta}{2} \sqrt{d}\right\}$
$\Rightarrow \pi\left(A_{\beta}\right) \simeq 1, \quad P_{0}^{n}\left(A_{\beta}\right) \simeq 0$ if $n \ll \frac{d k g d}{4}$

Card shuffling
$S=\{$ permutations of $\{1-N\}\} \quad|S|=N$!
Shuffling method = Marka chan on S
large!
Question: For a given method, haw lang does it take to decently shuffle the deck?
(ie. to have a distribution ε-close in TV-dist to the uniform distribution on S)

Method 0: cut repeatedly the deck not an ergodic chain (51! equivalence classes)
Method 1: "randan to top"

- choose a number umif at randan in $\{1,-N\}$
- look for the card with this number \& pat it an top

This is an ergodic chain!
Claim: $\theta(N \log N)$ shuffles are needed with this method.
"Pf":UB
Capping
$X_{n}=$ chain starting from the identity state Id
$\varphi_{n}=$ chain staring from $\pi \sim$ uniform choose a number $\in\{1-N\}$ uni. at randan \& look after the card with this number in each deck, and put it an top in each deck.

Former lemma:

$$
\| \underbrace{P_{I d}^{n}}_{\text {dist of } x_{n}}-\underbrace{\pi}_{\text {dist of } Y_{n}} U_{T V} \leqslant \mathbb{P}\left(x_{n} \neq Y_{n}\right)
$$

Observchion:
After each card number has been picked at least once, the two decks are the same So if $\tau=\inf \{n \geqslant 1$: each number has been picked once $\}$ Then $\mathbb{P}\left(x_{n} \neq y_{n}\right) \leq \mathbb{P}(\tau>n)$

Capar codlector pb.

$$
\begin{aligned}
& \mathbb{E}(\tau)=\frac{N}{N}+\frac{N}{N-1}+\frac{N}{N-2}+\ldots+\frac{N}{3}+\frac{N}{2}+\frac{N}{1} \\
& \quad=N \cdot \sum_{k=1}^{N} \frac{1}{K} \sim N \cdot \log N \\
& \operatorname{Var}(\tau)=O\left(N^{2}\right) \quad C \simeq N \log N \pm N
\end{aligned}
$$

So $\mathbb{P}(\tau>n) \sim 0$ for $n \gg N \log N$
"Pf" (LB):

$$
\begin{gathered}
U P_{I d}^{n}-\pi U_{T V}=\max _{A C S}\left|P_{I d}^{n}(A)-\pi(A)\right| \\
\geq\left|P_{I d}^{n}(A)-\pi(A)\right| \quad \forall A C S
\end{gathered}
$$

Choose $A_{k}=\{k$ bottom cards of the deck are ordered $3 \quad k_{(k=10)}^{\substack{\text { fixed }}}$

$$
\pi\left(A_{k}\right)=\frac{1}{k!} \sim \text { small }
$$

$$
(k=10)
$$

To check: $P_{I d}^{n}(A) \sim 1$ if $n \ll N \log N$

Observation: whit k different been picked, at least k bolton cards of the deck will be ordered (because we started from the Id permutation)
The average to pick $N-k$ different cards is

$$
\begin{aligned}
\mathbb{E}\left(\tau_{k}\right)=\frac{N}{N}+\frac{N}{N-1}+\frac{N}{N-2}+\cdots+\frac{N}{k}=N \sum_{e=k}^{N} \frac{1}{e} & \simeq N(\log N-\log k) \\
& =N \log \left(\frac{N}{k}\right)
\end{aligned}
$$

Conclusion:
If $n \ll N \log N, P_{I d}^{n}\left(A_{k}\right) \sim 1$
So $\| P_{I d}^{n}-\pi H_{T V} \sim 1$
Method 2: riffle shuffle
$\Rightarrow \theta(\log N)$ suffice!

Sampling

$$
\pi_{i} \geqslant 0, \sum_{i=1} \pi_{i}=1
$$

Given a distribution ($\bar{U}_{i}, i \in S$) an a state space S, haw can we sample from it?
Easy sdution": let X be a r.U. with values ins such that $\mathbb{P}(X=i)=\pi_{i} \quad i \in S$ and assume $S=\mathbb{N}$

Generate $U \sim U[0,1]$ and declare

$$
X=\left\{\begin{array}{lll}
0 & \text { if } 0 \leq u \leq \pi_{0} \\
1 & \text { if } \pi_{0}<U \leq \pi_{0}+\pi_{1} \\
2 & \text { if } \bar{\pi}_{0}+\pi_{1}<U \leq \pi_{0}+\pi_{1}+\pi_{2} \\
\vdots & &
\end{array}\right.
$$

$=F^{-1}(U)$ where $F=c d f$ of X

Why to sample? 1. Optimization of a

$$
f:\{0,1\}^{d} \rightarrow \mathbb{R}
$$

Am: to maximize f, ie
to find $x_{0} \in\{0,1\}^{d}$ st $f\left(x_{0}\right)=$ max.
Define $\pi(x)=\left\{\begin{array}{cl}0 & \text { if } f(x) \neq \text { max } \\ c=\frac{1}{z} & \text { if } f(x)=\text { max }\end{array}\right.$
where $z=$ number of maxima of f
First ide a: sample from π to get a maximum x

Second ide a: instead of sampling from π, sample from π_{β} defined us follow:

$$
\bar{n}_{\beta}(x)=\frac{e^{\beta f(x)}}{z_{\beta}} \quad x \in\{0,1\}^{d}
$$

where $Z_{\beta}=\sum_{x \in\{9,1\}} e^{\beta} e^{\beta} f(x)$ normalization cst "Partition function"
2. Compure awerages (Mante Carlo methad)

- $X=r-v$. with values in S and dismation π ie $\mathbb{P}(X=i)=\pi_{i} \quad i \in S$
- $f: S \rightarrow \mathbb{R}$
- Am: Compure $\mathbb{E}(f(x))=\sum_{i \in S} f(i) \pi_{i}$

MC method: draw independear samples $x_{1} \ldots x_{M}$ \& cappure $\frac{1}{M} \sum_{j=1}^{M} f\left(x_{j}\right) \sim \mathbb{E}(f(x))$

$$
\begin{aligned}
\operatorname{Var} & \left(\frac{1}{\pi} \sum_{j=1}^{M} f\left(x_{j}\right)\right)=\frac{1}{m^{2}} \sum_{j=1}^{M} \operatorname{Var}^{\operatorname{Var}\left(f\left(x_{j}\right)\right)} \\
= & =\frac{\operatorname{Var}(f(x)}{M}
\end{aligned}
$$

std dev ~ $\theta\left(\frac{1}{\sqrt{M}}\right)$

