Sections MX-SC-CGC

21 novembre 2022

Analyse I – Série 9

Echauffement. (V/F : Continuité sur un intervalle)

Soient I un intervalle, $f: I \to \mathbb{R}$ une fonction continue et f(I) l'image de I par f.

V F a) f(I) est un intervalle. b) Si I est borné et fermé, alors f(I) est borné et fermé. c) Si I est borné, alors f(I) est borné. d) Si I est ouvert, alors f(I) est ouvert. e) Si I = [a, b] avec $a, b \in \mathbb{R}$, a < b, alors f atteint soit son min soit son maximum sur I. \square f) Si $I = [a, \infty[$ avec $a \in \mathbb{R}$, alors f atteint soit son minimum soit son maximum sur I. g) Si f est strictement croissante et I est ouvert, alors f(I) est ouvert.

Exercice 1. (Continuité à gauche et à droite)

Soient $\alpha, \beta \in \mathbb{R}$ et soit la fonction $f: [0, \infty) \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{3x^2 - 10x + 3}{x^2 - 2x - 3}, & x > 3\\ \alpha, & x = 3\\ \beta x - 4, & x < 3 \end{cases}$$

Etudier la continuité de f en $x_0=3$ pour les paires de paramètres (α,β) données ci-dessous.

a)
$$(1, \frac{1}{2})$$

b)
$$(1, \frac{5}{3})$$

c)
$$(2, \frac{5}{3})$$

e)
$$(2,2)$$

Exercice 2. (Théorème des valeurs intermédaires)

Montrer que les équations suivantes admettent des solutions dans leurs domaines de définition :

a)
$$e^{x-1} = x + 1$$

b)
$$x^2 - \frac{1}{x} = 1$$

Exercice 3. (Algorithme de bissection)

En appliquant l'algorithme de bissection, localiser une solution de l'équation

$$x^3 + x - 1 = 0$$

dans un intervalle de longueur $L \leq \frac{1}{8}$.

Exercice 4. (Dérivabilité)

Déterminer $\alpha, \beta \in \mathbb{R}$ tels que la fonction $f: \mathbb{R} \to \mathbb{R}$ soit dérivable partout, où :

$$f(x) = \begin{cases} x^2 - x + 3, & x \le 1\\ \alpha x + \beta, & x > 1 \end{cases}$$

Exercice 5. (Dérivabilité)

Déterminer toutes les valeurs de l'entier $m \in \mathbb{Z}$ pour lesquelles la fonction $f: \mathbb{R} \to \mathbb{R}$ admet une dérivée au point x=0. Pour lesquelles de ces valeurs m la dérivée f' est-elle continue au point x = 0 ?

a)
$$f(x) = \begin{cases} \sin(x^m), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

b)
$$f(x) = \begin{cases} x^m \sin(\frac{1}{x}), & x \neq 0\\ 0, & x = 0 \end{cases}$$

Exercice 6. (Propriétés de la dérivée)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Montrer que

- a) f paire \Rightarrow f' impaire,
- b) f impaire \Rightarrow f' paire,
- c) f périodique \Rightarrow f' périodique.

Exercice 7. (Dérivées d'ordre supérieur)

Dans les trois cas suivants, calculer $f^{(n)}$ la dérivée d'ordre n de la fonction f, pour $n \in \mathbb{N}$:

a)
$$f(x) = x^m \quad (m \in \mathbb{Z})$$

b)
$$f(x) = \sin(2x) + 2\cos(x)$$
 c) $f(x) = \text{Log}(x)$

c)
$$f(x) = \text{Log}(x)$$

Exercice 8. (Dérivée d'une composée de fonctions)

Calculer $(g \circ f)'(0)$ pour les fonctions $f, g: \mathbb{R} \to \mathbb{R}$ définies par

a)
$$f(x) = 2x + 3 + (e^x - 1)\sin(x)^7\cos(x)^4$$

et
$$g(x) = \text{Log}(x)^3$$
.

b)
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) + 2x, & x \neq 0\\ 0, & x = 0 \end{cases}$$

et
$$g(x) = (x-1)^4$$
.

Exercice 9. (Calcul de dérivées)

Calculer la dérivée f' de la fonction f et donner les domaines de f et f'.

a)
$$f(x) = \frac{5x+2}{3x^2-1}$$

b)
$$f(x) = \frac{x^2}{\sqrt{1 - x^2}}$$

c)
$$f(x) = \sin(x)^2 \cdot \cos(x^2)$$

d)
$$f(x) = \operatorname{tg}(x)$$
 (sans formulaire!)

e)
$$f(x) = \sqrt{\sin(\sqrt{\sin(x)})}$$

f)
$$f(x) = \sqrt[5]{(2x^4 + e^{-(4x+3)})^3}$$

g)
$$f(x) = \text{Log}_3(\text{ch}(x))$$

h)
$$f(x) = \text{Log}(4^{\sin(x)})e^{\cos(4x)}$$

Exercice 10. (V/F : Dérivation)

Soient $f, g: \mathbb{R} \to \mathbb{R}$ des fonctions.

V F

- a) Si f est dérivable en $a \in \mathbb{R}$, alors il existe $\delta > 0$ tel que f est continue sur $|a \delta, a + \delta|$. \square
- b) Si f est dérivable à gauche et à droite en $a \in \mathbb{R}$, alors f est dérivable en a.
- c) Si f est dérivable sur \mathbb{R} , alors $g(x) = \sqrt{f^2(x)}$ est dérivable sur \mathbb{R} .
- d) Si $f(x) = x^2 2x$, alors $(f \circ f)'(1) = 0$.