=PFL

Dependability through Redundancy

Prof. George Candea
School of Computer & Communication Sciences

How to achieve dependability?

o Use modularity ...
o _..and REDUNDANCY for ...

o fault tolerance
* high reliability
* high availability

Redundancy = duplication with the purpose of increasing dependability

Eault latent K
A

activated =====> Error

latent

Types of software faults / defects

N
&@) * Bohrbug

e Clear+ easy to reproduce => easy to fix

, ® Heisenbug

AxAp >

* qdisappears when you attach with debugger

wayien o Schrodingbug

%

Fr e * starts causing failure once you realize it should

* Mandelbug

* complex, obscure, chaotic, seeminqgly non-deterministic

Using redundancy to tolerate fauits

o "tolerate" faults = cope with errors or the resulting failures

* the actual goal is to tolerate the consequences of faults

* Using redundancy to cope with errors Data/information redundancy

* forward error correction
* redundant copies/replicas (=coarse-grained ECC) Geographic redundancy

* Using redundancy to cope with failures Space

Processing redundancy<Time

o server/service failover

* Internet routing |
Functional redundancy

Kara Sea {
A =) \
\
\
. .'-
\
\
\
. "\.
\
- } - :
L
|
| 0
| N gt 7
‘ Passages s Greenland
lceland C
7
K
7
.'/
y
,/
"I
" Belarus
~
N\
Ukraine -
Austria Kazakhstan
Mongolia
Qo Romania
°Z° Uzbekistan Kyrgyzstan
United States Turkmenistan
- L
ira Afghanistan
A 9 Iran Nort
s Pakistan Paci f
4 Algeria Ocea

|
“\'-1! Q oMyanmar
W (Burma)

Oman

Mall i)
Niger Sudan

Burkina
Fasa

Nigeria

South Sudan Ethiopia

——— -

Angola Zambia

Bolivia

Namibia Zimbabwe
Indian

ocean

Botswana

Paraguay

Australia
South

|
. |
Pacific I
Ocear :
- Uruguay |
. |
P/ Argentina v S A1 retralian \ I
. - 5 G
L) » - I
|
0) i\ . . |
L) y L l
Seq
.) Nt :
0 Zeqgnd |
I
. . V'
L) /./
- /
/
'
/
rs

o Specification of what could go wrong and what cannot go wrong

o Used to predict consequences of failures
* Should also specify what can / cannot happen during recovery
* Remember the single points of failure (SPOFs)

o Example: N-version programming

* yse redundancy to tolerate software faults

Fault [atent
activated ==:=> Error

latent
activated -====> Failure

* Different types of software defects
* Bohrbug, Heisenbug, ...

* Redundancy helps tolerate errors and failures

o Data redundancy, processing redundancy, ...

* Fault model = assumptions about what can vs. cannot go wrong

safety-critical systems

o Safety critical = system whose failure may result in "bad" outcomes

o SCADA, aviation, space, automotive, healthcare, ...

o Fail-safe = failure does not have "bad" consequences

o safety-critical = fail-safe

Dependable systems

Avalilability = readiness for correct service

Reliability = continuity of correct service

Safety = absence of catastrophic consequences

Confidentiality = absence of unauthorized disclosure of information
Integrity = absence of improper system state alterations

Maintainability = ability to undergo repairs and modifications

Reliability

* Reliability = probability of continuous operation

* continuous operation = (correctly) producing outputs in response to inputs

R(t) = P(module operates correctly at time t | it was operating correctly at t=0)

TTF
System is UP - womssemsmmemsmny - <>

time
System is DOWN -------rerrerremsrccneccce T e

MTBF = MTTF + MTTR

Measuring reliability

* Ingeneral MTBF or MTTF (MTBF = MTTF + MTTR)
o Specifics: Example from SSD spec sheet: P/E cycles, TBW, GB/day, DWPD, MTBF ...

o Example: Samsung SSD 850 Pro SATA

o Warranty period = 10 years «—__
o MTBF = 2M hours (228 years) «—

* assumes operation of 8 hrs/day
o 2.5K SSDs => you'd experience 1 failure every ~100 days (2M / 8 / 2500)

Why different???

Recap: Reliability

* Dependability = Reliability + Availability + Safety + ...
o Safety-critical vs. reliable
e MTBF =MTTF + MTTR

Availlabiiity

* Availability = probability of producing (correct) outputs in response to inputs

Level of Percent of Downtime | Downtime
Avallability Uptime per Year per Day
1 Nine 90% 36.5 days 2.4 hrs.

2 Nines 99% 3.65 days 14 min.
3 Nines 99.9% 8.76 hrs. | 86 sec.
4 Nines 99.99% 52.6 min.4 x1().6 sec.
5 Nines 99.999% 5.25 min. .80 sec.
6 Nines | 99.9999% 31.5 sec.y+10.6 msec

Availability vs. Reliability

* Continuity of service does not matter (unlike reliability)

* Intheory: uptime is too strict a measure of availability
* |n practice: what's the difference?

o Uptime => avallability but Availability = uptime

o Examples of ...

* Highly available systems with poor reliability (and how is redundancy used)

* Highly reliable systems with poor availability (and how is redundancy used)

system availability

MTTF e
Avallability ~VTBFE
e o e MTTR
Unavailability = 1 - Availability = MTBFE MTTR

MTBF = MTTF + MTTR = MTTF (if MTTF » MTTR)

* |ncrease availablility by

* ncreasing MTTF (higher reliability)
* reducing MTTR (faster recovery)

o Definition:
When a system fails, how does that failure appear
at the interface of a component?

* FourkKinds
* fail-stop
* fail-fast
* fail-safe
* fail-soft

Fallure mode 1: Fail-stop

e a.k.a. "crash failure" mode

o Definition: halt in response to any internal error that threatens to turn into
a failure, before the failure becomes visible

* =>never expose arbitrary behavior

o Strict fault model: voter is reliable
o 2f+1independent modules to tolerate f failures
* Achilles’s heel: voter

Failure mode 2: Fail-fast

* Definition: immediately report at interface any situation that could lead to failure

* (Can stop immediately after detection or delay (if expect recovery)
* Must stop before failure manifests externally

* Requires frequent checks of state invariants

o (et auditability of error propagation

* Definition: the component remains safe in the face of failure

* but possibly degraded functionality or performance

o "Safety" is context-dependent

o "Controlled" failure

Fallure mode 4: Fail-soft

Y . . . Sharded
o Definition: internal failures lead to graceful degradation of database
functionality instead of outright failure Search =2 15D
engine‘/ =
o Example: simple search engine] =
s e 215D
* system has redundancy at every level O = =
* Intuition ™~ %D

* Functionality is typically bottlenecked on data movement (disks, network switches)
* =>Functionality tied to how much data can be moved per unit of time

* Harvest (completeness of responses) vs. yield (fraction of requests served)

Failure mode 4: Fail-soft: DQ Principle

D =data/query DQ Principle: "DxQ is constant'
Q = queries/sec (DQ value p determined by system configuration)

D
Harvest H = o

o Fail-stop (TMR)
o Fail-fast (Redundant invariant checks)
o Fail-safe
* OKtofall, as long as safety is not compromised

o Fail-soft (Weaker spec)

* Redundant resources for top band of acceptable system behavior
* Harvest/yield and the DQ principle in data-intensive parallel systems

How to improve availability hy 10x 2

How to improve availability by 10x 3

MTTR 4 +10

Unavallability = MTTE 210

Gomponents of recovery time

* Trecover = Tdetect + Tdiagnose + Trepair Detection/Prediction says...
Failure ~ No Failure

* How to reduce Taetect ? D
=

o Automation | Llﬂ_s FP TN
o Prediction/anticipation “ O
o Trade-offs between FPs and FNs § =
~ ©

» How to reduce Tdiagnose? T 5| 1 N
o Lots of instrumentation, ML, ... T

o Also a function of what recovery mechanism have available

* How to reduce Trepair?

o Mostly app-specific
 Reboot is universal

How to improve availability hy 10x 2

Rehoot-hased recovery

Rehoot-hased recovery

* Design system (components) that recover(s) solely via (micro)rebooting

* stop ==crash start == recover

* Design for e.g. microservices

* short-running tasks, clusters of many nodes, ...

o (Crash-only components

o State segregation

* (Crash-only system of components

* Modularization + functional decoupling
* Retryable interactions

o [eased resources

Rehoot-hased recovery: State segregation

(State segregation)
o (oal: prevent microreboot from inducing corruption or Modularization

Functional decoupling

Retryable interactions

state inconsistency Leased resources

* apply modularization idea to all state: session state vs. persistent state

o Segment the state by lifetime

o Keep all state that should survive a reboot in dedicated state stores

* stores located outside the application ...
* ... behind strongly-enforced high-level APIs (e.qg., DBs, KV stores)

o Separate data recovery from app recovery => do each one better

State segregation

» Components with individual loci of control (Modularizatin __)

Functional decoupling

_ , Retryable interactions
o Well defined interfaces

Leased resources

o Small in terms of program logic and startup time -

® Treboot = lrestart T Tinitialization

o
\

. T N 32
;£2§EE§;§ g : ;- :‘
..) o3 A\ _

- -‘3£:!E=3“r' ,

®. -

b
)
FIR 1)

f o |
}

an

e

A

Amazon S3 for logfile ,

ClickStream data and product
image

Product @
. Catalog and
@ Recommgndatnon . Session Cache
Service

CACHE § CACHE
Search Engine

with Amazon

M)
'lH"“

"
H 1) :
'..” |" n o;"

Jym
L'
||I({{|c,":

"
d
"

L)
1
"

”’ '3 ~H .!'
n

1R AL

l}!\ .

o
’

r
i Sl e

'
)

1]

|

’
"

¥

-.!“_ iy

'
It
H
"
-l

f e

{

"
" '
”“l

&

ni
Iy

14
S

i
Wiy,
i o

I

A

' m! ‘”! .

Mon M
!
o

!

) ’
t
1

mn»s
e

’
1 3

H

Elastic Cache ElasticSearch

el

“H
-))
';"f_'lxo s‘ ’

n
ll”

ny s
“‘ll '
I

i, o#N

]
1)

Amazon Cloudfront E-commerce
Application

Service

' 't
W N

(=)

~ M

"

Cart Checkout

Purchase request and Service DynamoDB for product
payment over SSL

catalog, user profile,
user transaction store

Rehoot-hased recovery: Functional decoupling

State segregation
Modularization
O
Goal (Functional decoupling)
Retryable interactions

* reduced disruption of system during restart Leased resources

* easy reintegration of component after reinit

* No direct references (e.g., no pointers) across component boundaries

* Store cross-component references outside
component

o Naming indirection through runtime
e Marshall names into state store

Rehoot-hased recovery: Retryahle interactions

State segregation
Modularization
0 Goal Functional decouplin
(Retryable interaction%

* seamless reintegration of microrebooted component by Leased resources
recovering in-flight requests transparently

* |nteract via timed RPCs or equivalent

* |fno response, caller can gracefully recover
* timeouts help turn non-Byzantine failures into fail-stop events
* RPC to a microrebooting module throws RetryAfter(t) exception

* Action depends on whether RPC is idempotent or not

EXercise: Rehoot-hased recovery: Leased resources

State segregation

* Goal: avoid resource leakage without fancy resource tracking fiviona cee

Functional decoupling
Retryable interactions

* [ease = timed ownership (Leased resources)

* File descriptors, memory, ...
o Persistent long-term state
e (CPU execution time

* Requests carry TTL => automatically purged when TTL runs out

* Trecover = ldetect + Tdiagnose T Trepair

* [frecoveryis cheap (i.e., TrepairiS SMall), can tolerate FPs
* [nstead of trying to increase MTTF, consider reducing MTTR

o Availability goes up, reliability is not affected (in a well designed system)

* Reboot as a universal "nammer" for curing failures

o Systematically employ rebooting to cure failures?

o Well suited for workloads consisting of fine-grained requests

o Currently used in Internet services/microservices, analytics engine, satellite ground station
o [fafine-grained microreboot doesn't make the problem go away, try coarser-grained

Google "crash-only software” for more info...

* (oal: clean up state to prevent accumulation of errors

* [nsight: Reboot as a prophylactic
* Does nothing about defects, but reduces probability of turning errors into failures

* Turns unplanned downtime into planned downtime

Completion of

State Rejuvenation

Change

* Dynamic version of "preventive maintenance”

System

Failure @Rejuvenation

* Release leaked resources, wipe out data corruption, ...

Completion of
Repair

* (oal: clean up state to prevent accumulation of errors

* [nsight: Reboot as a prophylactic
* Does nothing about defects, but reduces probability of turning errors into failures

* Turns unplanned downtime into planned downtime

Completion of

State Rejuvenation

Change

* Dynamic version of "preventive maintenance”

System

Failure
* Release leaked resources, wipe out data corruption, ... Q

Completion of
Repair

* Microrejuvenation

* turn unplanned downtime into planned partial downtime (or none at all)

