
Prof. George Candea

School of Computer & Communication Sciences

Dependability through Redundancy

• Use modularity ...

• ... and REDUNDANCY for ...

• fault tolerance

• high reliability

• high availability

How to achieve dependability?

Redundancy = duplication with the purpose of increasing dependability

George Candea Principles of Computer Systems

Fault tolerance

George Candea Principles of Computer Systems

Fault latent
activated

defect

Error latent
activated

>

change in state

Failure>

violation of spec

Types of software faults / defects

• Bohrbug

• clear + easy to reproduce => easy to fix

• Heisenbug

• disappears when you attach with debugger

• Schrödingbug

• starts causing failure once you realize it should

• Mandelbug

• complex, obscure, chaotic, seemingly non-deterministic

George Candea Principles of Computer Systems

Using redundancy to tolerate faults

• "tolerate" faults = cope with errors or the resulting failures

• the actual goal is to tolerate the consequences of faults

• Using redundancy to cope with errors

• forward error correction

• redundant copies/replicas (=coarse-grained ECC)

• ...

• Using redundancy to cope with failures

• server/service failover

• Internet routing

• …

George Candea Principles of Computer Systems

Processing redundancy

Data/information redundancy

Functional redundancy

Geographic redundancy

Space
Time

George Candea Principles of Computer Systems

https://www.submarinecablemap.com

SPOF

Fault model

• Specification of what could go wrong and what cannot go wrong

• Used to predict consequences of failures

• Should also specify what can / cannot happen during recovery

• Remember the single points of failure (SPOFs)

• Example: N-version programming

• use redundancy to tolerate software faults

George Candea Principles of Computer Systems

Recap: Fault tolerance

• Different types of software defects

• Bohrbug, Heisenbug, …

• Redundancy helps tolerate errors and failures

• Data redundancy, processing redundancy, ...

• Fault model = assumptions about what can vs. cannot go wrong

George Candea Principles of Computer Systems

Fault latent
activated Error latent

activated Failure
>

>

Safety-critical systems

• Safety critical = system whose failure may result in "bad" outcomes

• SCADA, aviation, space, automotive, healthcare, …

• Fail-safe = failure does not have "bad" consequences

• safety-critical ⇏ fail-safe

George Candea Principles of Computer Systems

Dependable systems

• Availability = readiness for correct service

• Reliability = continuity of correct service

• Safety = absence of catastrophic consequences

• Confidentiality = absence of unauthorized disclosure of information

• Integrity = absence of improper system state alterations

• Maintainability = ability to undergo repairs and modifications

George Candea Principles of Computer Systems

Reliability

• Reliability = probability of continuous operation

• continuous operation = (correctly) producing outputs in response to inputs

George Candea Principles of Computer Systems

R(t) = P(module operates correctly at time t | it was operating correctly at t=0)

TBF

TTF

TTR

MTBF = MTTF + MTTR

System is UP

System is DOWN

time

Measuring reliability

• In general MTBF or MTTF (MTBF = MTTF + MTTR)
• Specifics: Example from SSD spec sheet: P/E cycles, TBW, GB/day, DWPD, MTBF ...

• Example: Samsung SSD 850 Pro SATA
• Warranty period = 10 years
• MTBF = 2M hours (228 years)
• assumes operation of 8 hrs/day
• 2.5K SSDs => you'd experience 1 failure every ~100 days (2M / 8 / 2500)

George Candea Principles of Computer Systems

Why different???

Recap: Reliability

• Dependability = Reliability + Availability + Safety + …

• Safety-critical vs. reliable

• MTBF = MTTF + MTTR

George Candea Principles of Computer Systems

• Availability = probability of producing (correct) outputs in response to inputs

Availability

×10

÷10

George Candea Principles of Computer Systems

Availability vs. Reliability

• Continuity of service does not matter (unlike reliability)

• In theory: uptime is too strict a measure of availability

• In practice: what's the difference?

• Uptime => availability but Availability ⇏ uptime

• Examples of …

• Highly available systems with poor reliability (and how is redundancy used) 

...

• Highly reliable systems with poor availability (and how is redundancy used) 

...

George Candea Principles of Computer Systems

System availability

• Increase availability by

• increasing MTTF (higher reliability)

• reducing MTTR (faster recovery)

George Candea Principles of Computer Systems

Availability = MTTF
MTBF

Unavailability = 1 - Availability = MTTR
MTBF

MTBF = MTTF + MTTR ≅ MTTF (if MTTF ≫ MTTR)

Reliability

• Reliability = probability of continuous operation

• continuous operation = (correctly) producing outputs in response to inputs

George Candea Principles of Computer Systems Fall 2021

Rm(t) = P(module m operates correctly at time t |
 m was operating correctly at t=0)

TBF

TTF

TTR

MTBF = MTTF + MTTR

System is UP

System is DOWN

time

Unavailability ≅ MTTR
MTTF

Failure modes

George Candea Principles of Computer Systems

Failure modes

• Definition: 
 When a system fails, how does that failure appear 
 at the interface of a component?

• Four kinds

• fail-stop

• fail-fast

• fail-safe

• fail-soft

George Candea Principles of Computer Systems

Failure mode 1: Fail-stop

• a.k.a. "crash failure" mode

• Definition: halt in response to any internal error that threatens to turn into
a failure, before the failure becomes visible

• => never expose arbitrary behavior

• Any system can be made fail-stop with triple-modular redundancy (TMR)
• Strict fault model: voter is reliable
• 2f +1 independent modules to tolerate f failures
• Achilles's heel: voter

George Candea Principles of Computer Systems

M1

M2

M3

VoterIn Out

TMR

Failure mode 2: Fail-fast

• Definition: immediately report at interface any situation that could lead to failure

• Can stop immediately after detection or delay (if expect recovery)

• Must stop before failure manifests externally

• Requires frequent checks of state invariants

• Get auditability of error propagation

George Candea Principles of Computer Systems

Failure mode 3: Fail-safe

• Definition: the component remains safe in the face of failure

• but possibly degraded functionality or performance

• "Safety" is context-dependent

• "Controlled" failure

George Candea Principles of Computer Systems

Failure mode 4: Fail-soft

• Definition: internal failures lead to graceful degradation of 
functionality instead of outright failure

• Example: simple search engine
• system has redundancy at every level

• Intuition
• Functionality is typically bottlenecked on data movement (disks, network switches)
• => Functionality tied to how much data can be moved per unit of time

• Harvest (completeness of responses) vs. yield (fraction of requests served)

George Candea Principles of Computer Systems

Q

⅓D

⅓D

⅓D

Search

engine

Sharded 
database

DQ Principle: H × Y = ρ Y = QC / QT × H = DA / DT = ρ

Failure mode 4: Fail-soft: DQ Principle

George Candea Principles of Computer Systems

D = data/query

Q = queries/sec

DQ Principle: "D×Q is constant"
(DQ value ρ determined by system configuration)

Harvest H = DA

DT

Yield Y = QC

QT

DA

Q

Q

Q
Q
Q

QC DTQT

Recap: Failure modes

• Fail-stop (TMR)

• Fail-fast (Redundant invariant checks)

• Fail-safe

• OK to fail, as long as safety is not compromised

• Fail-soft (Weaker spec)

• Redundant resources for top band of acceptable system behavior

• Harvest/yield and the DQ principle in data-intensive parallel systems

George Candea Principles of Computer Systems

How to improve availability by 10× ?

George Candea Principles of Computer Systems

How to improve availability by 10× ?

George Candea Principles of Computer Systems

Unavailability ≅ MTTR
MTTF

÷10
×10

Components of recovery time

• Trecover = Tdetect + Tdiagnose + Trepair

• How to reduce Tdetect ?

• Automation

• Prediction/anticipation

• Trade-offs between FPs and FNs

• How to reduce Tdiagnose?

• Lots of instrumentation, ML, ...

• Also a function of what recovery mechanism have available

• How to reduce Trepair?

• Mostly app-specific

• Reboot is universal

George Candea Principles of Computer Systems

Detection/Prediction says...

Tr
ut

h
is.

..

Failure

Fa
ilu

re

FP TN

TP

No
 F

ail
ur

e

No Failure

FN

How to improve availability by 10× ?

George Candea Principles of Computer Systems

Reboot-based recovery

Reboot-based recovery

• Design system (components) that recover(s) solely via (micro)rebooting

• stop == crash start == recover

• Design for e.g. microservices

• short-running tasks, clusters of many nodes, ...

• Crash-only components

• State segregation

• Crash-only system of components

• Modularization + functional decoupling

• Retryable interactions

• Leased resources

George Candea Principles of Computer Systems

htt
ps

://a
kn

ex
tph

as
e.c

om
/cr

os
sin

g-
the

-jo
b-

se
ar

ch
-fin

ish
-lin

e/b
ett

er
-th

ing
s-a

re
-co

mi
ng

/

Reboot-based recovery: State segregation

• Goal: prevent microreboot from inducing corruption or 
state inconsistency

• apply modularization idea to all state: session state vs. persistent state

• Segment the state by lifetime

• Keep all state that should survive a reboot in dedicated state stores

• stores located outside the application ...

• ... behind strongly-enforced high-level APIs (e.g., DBs, KV stores)

• Separate data recovery from app recovery => do each one better

George Candea Principles of Computer Systems

State segregation

Modularization

Functional decoupling

Retryable interactions

Leased resources

Reboot-based recovery: Strong modularization

• Components with individual loci of control

• Well defined interfaces

• Small in terms of program logic and startup time

• Treboot = Trestart + Tinitialization

George Candea Principles of Computer Systems

State segregation

Modularization

Functional decoupling

Retryable interactions

Leased resources

htt
ps

://t
wi

tte
r.c

om
/W

er
ne

r/s
tat

us
/74

16
73

51
45

67
14

34
24

/ph
oto

/1

https://subscription.packtpub.com/book/web-development/9781838645649/6/ch06lvl1sec28/building-an-soa-based-e-commerce-website-architecture

https://subscription.packtpub.com/book/web-development/9781838645649/6/ch06lvl1sec28/building-an-soa-based-e-commerce-website-architecture

Reboot-based recovery: Functional decoupling

• Goal

• reduced disruption of system during restart

• easy reintegration of component after reinit

• No direct references (e.g., no pointers) across component boundaries

• Store cross-component references outside 

component

• Naming indirection through runtime

• Marshall names into state store

George Candea Principles of Computer Systems

State segregation

Modularization

Functional decoupling

Retryable interactions

Leased resources

Reboot-based recovery: Retryable interactions

• Goal

• seamless reintegration of microrebooted component by 

recovering in-flight requests transparently

• Interact via timed RPCs or equivalent

• if no response, caller can gracefully recover

• timeouts help turn non-Byzantine failures into fail-stop events

• RPC to a microrebooting module throws RetryAfter(t) exception

• Action depends on whether RPC is idempotent or not

George Candea Principles of Computer Systems

State segregation

Modularization

Functional decoupling

Retryable interactions

Leased resources

Exercise: Reboot-based recovery: Leased resources

• Goal: avoid resource leakage without fancy resource tracking

• Lease = timed ownership

• File descriptors, memory, …

• Persistent long-term state

• CPU execution time

• Requests carry TTL => automatically purged when TTL runs out

George Candea Principles of Computer Systems

State segregation

Modularization

Functional decoupling

Retryable interactions

Leased resources

Recap

• Trecover = Tdetect + Tdiagnose + Trepair

• If recovery is cheap (i.e., Trepair is small), can tolerate FPs

• Instead of trying to increase MTTF, consider reducing MTTR

• Availability goes up, reliability is not affected (in a well designed system)

• Reboot as a universal "hammer" for curing failures

• Systematically employ rebooting to cure failures?

• Well suited for workloads consisting of fine-grained requests

• Currently used in Internet services/microservices, analytics engine, satellite ground station

• If a fine-grained microreboot doesn't make the problem go away, try coarser-grained

George Candea Principles of Computer Systems

Google "crash-only software" for more info...

Software rejuvenation

• Goal: clean up state to prevent accumulation of errors

• Insight: Reboot as a prophylactic

• Does nothing about defects, but reduces probability of turning errors into failures

• Turns unplanned downtime into planned downtime

• Dynamic version of "preventive maintenance"

• Release leaked resources, wipe out data corruption, ...

George Candea Principles of Computer Systems

Software rejuvenation

• Goal: clean up state to prevent accumulation of errors

• Insight: Reboot as a prophylactic

• Does nothing about defects, but reduces probability of turning errors into failures

• Turns unplanned downtime into planned downtime

• Dynamic version of "preventive maintenance"

• Release leaked resources, wipe out data corruption, ...

• Microrejuvenation

• turn unplanned downtime into planned partial downtime (or none at all)

George Candea Principles of Computer Systems

