Midterm Exam

Exercise 1. (10 points)

Consider the Markov chain $\left(X_{n}, n \geq 0\right)$ with state space $S=\{(j, k), j, k \in \mathbb{N}, j \leq k\}$ and transition probabilities given by
where $0<p<1$. Here is the corresponding transition graph for the first states:

a) Compute $f_{(0,0),(0,0)}(n)=\mathbb{P}\left(T_{(0,0)}=n \mid X_{0}=(0,0)\right)$ for a generic value of $n \geq 1$. $N B: T_{(0,0)}=\inf \left\{n \geq 1: X_{n}=(0,0)\right\}$.
b) Prove that the chain X is recurrent.
c) Prove that the chain X is also positive-recurrent.

Hint: Compute $\mathbb{E}\left(T_{(0,0)} \mid X_{0}=(0,0)\right)$, using the identity: $\sum_{k \geq 0} k p^{k}=\frac{p}{(1-p)^{2}}$ valid for $0<p<1$.
d) Compute the stationary distribution π of the chain X.
e) Is π also a limiting distribution? Justify.
f) Does detailed balance hold? Justify.
please turn the page \%

Exercise 2. (10 points)

Let $N \geq 5$ be an integer and consider two Markov chains ($X_{n}, n \geq 0$), ($Y_{n}, n \geq 0$) defined on the same state space $S=\{0,1,2, \ldots, N-1\}$ and with the same transition matrix $P=\left(p_{i j}\right)_{i, j \in S}$, where

$$
p_{i j}= \begin{cases}p & \text { if } j=i+1(\bmod N) \\ q & \text { if } j=i-1(\bmod N) \\ 0 & \text { otherwise }\end{cases}
$$

and $p, q>0$ are such that $p+q=1$. Let also $\left(Z_{n}, n \geq 0\right)$ be the Markov chain on S defined as follows:

$$
Z_{n}=Y_{n}-X_{n}(\bmod N) \quad \text { for } n \geq 0
$$

a) Compute the transition matrix $Q=\left(q_{i j}\right)_{i, j \in S}$ of the chain Z.
b) Compute the eigenvalues $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{N-1}$ of the matrix Q (for a generic value of N).

Hint: If $A=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{N-1}\right)$ is an $N \times N$ circulant matrix, i.e.

$$
A=\left(\begin{array}{cccccc}
c_{0} & c_{1} & c_{2} & \cdots & c_{N-2} & c_{N-1} \\
c_{N-1} & c_{0} & c_{1} & & & c_{N-2} \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
c_{2} & & & c_{N-1} & c_{0} & c_{1} \\
c_{1} & c_{2} & \cdots & c_{N-2} & c_{N-1} & c_{0}
\end{array}\right)
$$

then its eigenvalues are given by

$$
\lambda_{k}=\sum_{j=0}^{N-1} c_{j} \exp (2 \pi i j k / N) \quad k=0, \ldots, N-1
$$

(please note that with this notation, the eigenvalues $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{N-1}$ are not ordered.)
c) For what values of $N \geq 5$ is the Markov chain Z ergodic? For these values, compute the limiting and stationary distribution of the chain. Is detailed balance satisfied? Justify all your answers.
d) For the values of N found in part c), compute the spectral gap γ of the chain Z.
e) For large values of N (still satisfying the condition found in part c), how large should n be (approximately) in order to ensure that the distribution of Z_{n} is ε-close (in total variation distance) to the stationary distribution?
Hint: You may use the approximation $\cos (x) \simeq 1-\frac{x^{2}}{2}$, valid for small values of x.

BONUS f) What is the average time between two encounters of the chains X and Y ? Does it depend on the values of N, p and q ? If yes, how?

