Markov Chains and Algorithmic Applications

EPFL - Fall Semester 2022-2023

## Midterm Exam

## Exercise 1. (10 points)

Consider the Markov chain  $(X_n, n \ge 0)$  with state space  $S = \{(j, k), j, k \in \mathbb{N}, j \le k\}$  and transition probabilities given by

$$p_{(0,0),(0,0)} = 1 - p \qquad p_{(0,k),(0,k+1)} = p \quad \text{for } k \ge 0$$

$$p_{(0,k),(1,k)} = 1 - p \quad \text{for } k \ge 1 \qquad p_{(j,k),(j+1,k)} = 1 \quad \text{for } 1 \le j \le k$$

$$p_{(k,k),(0,0)} = 1 \quad \text{for } k \ge 1$$

where 0 . Here is the corresponding transition graph for the first states:



a) Compute  $f_{(0,0),(0,0)}(n) = \mathbb{P}(T_{(0,0)} = n | X_0 = (0,0))$  for a generic value of  $n \ge 1$ . *NB:*  $T_{(0,0)} = \inf\{n \ge 1 : X_n = (0,0)\}.$ 

**b)** Prove that the chain X is recurrent.

c) Prove that the chain X is also positive-recurrent.

*Hint:* Compute  $\mathbb{E}(T_{(0,0)} | X_0 = (0,0))$ , using the identity:  $\sum_{k \ge 0} k p^k = \frac{p}{(1-p)^2}$  valid for 0 .

- d) Compute the stationary distribution  $\pi$  of the chain X.
- e) Is  $\pi$  also a limiting distribution? Justify.
- f) Does detailed balance hold? Justify.

please turn the page %

## Exercise 2. (10 points)

Let  $N \ge 5$  be an integer and consider two Markov chains  $(X_n, n \ge 0)$ ,  $(Y_n, n \ge 0)$  defined on the same state space  $S = \{0, 1, 2, ..., N-1\}$  and with the same transition matrix  $P = (p_{ij})_{i,j\in S}$ , where

$$p_{ij} = \begin{cases} p & \text{if } j = i + 1 \pmod{N} \\ q & \text{if } j = i - 1 \pmod{N} \\ 0 & \text{otherwise} \end{cases}$$

and p, q > 0 are such that p + q = 1. Let also  $(Z_n, n \ge 0)$  be the Markov chain on S defined as follows:

$$Z_n = Y_n - X_n \pmod{N} \quad \text{for } n \ge 0$$

a) Compute the transition matrix  $Q = (q_{ij})_{i,j \in S}$  of the chain Z.

**b)** Compute the eigenvalues  $\lambda_0, \lambda_1, \ldots, \lambda_{N-1}$  of the matrix Q (for a generic value of N).

*Hint:* If  $A = \operatorname{circ}(c_0, c_1, \ldots, c_{N-1})$  is an  $N \times N$  circulant matrix, i.e.

$$A = \begin{pmatrix} c_0 & c_1 & c_2 & \cdots & c_{N-2} & c_{N-1} \\ c_{N-1} & c_0 & c_1 & & & c_{N-2} \\ & \ddots & \ddots & \ddots & & \\ & & \ddots & \ddots & & \\ c_2 & & c_{N-1} & c_0 & c_1 \\ c_1 & c_2 & \cdots & c_{N-2} & c_{N-1} & c_0 \end{pmatrix}$$

then its eigenvalues are given by

$$\lambda_k = \sum_{j=0}^{N-1} c_j \exp(2\pi i j k/N) \quad k = 0, \dots, N-1$$

(please note that with this notation, the eigenvalues  $\lambda_0, \lambda_1, \ldots, \lambda_{N-1}$  are not ordered.)

c) For what values of  $N \ge 5$  is the Markov chain Z ergodic? For these values, compute the limiting and stationary distribution of the chain. Is detailed balance satisfied? Justify all your answers.

d) For the values of N found in part c), compute the spectral gap  $\gamma$  of the chain Z.

e) For large values of N (still satisfying the condition found in part c), how large should n be (approximately) in order to ensure that the distribution of  $Z_n$  is  $\varepsilon$ -close (in total variation distance) to the stationary distribution?

*Hint:* You may use the approximation  $\cos(x) \simeq 1 - \frac{x^2}{2}$ , valid for small values of x.

**BONUS f)** What is the average time between two encounters of the chains X and Y? Does it depend on the values of N, p and q? If yes, how?