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Midterm Solutions

Exercise 1. (10 points)

Consider the Markov chain (Xn, n ≥ 0) with state space S = {(j, k), j, k ∈ N, j ≤ k} and transition
probabilities given by

p(0,0),(0,0) = 1− p p(0,k),(0,k+1) = p for k ≥ 0

p(0,k),(1,k) = 1− p for k ≥ 1 p(j,k),(j+1,k) = 1 for 1 ≤ j ≤ k

p(k,k),(0,0) = 1 for k ≥ 1

where 0 < p < 1. Here is the corresponding transition graph for the first states:

a) (1 point) Compute f(0,0),(0,0)(n) = P(T(0,0) = n |X0 = (0, 0)) for a generic value of n ≥ 1.

NB: T(0,0) = inf{n ≥ 1 : Xn = (0, 0)}.

Answer: First note that the chain is irreducible, and that starting in (0, 0), it is only possible to
come back to (0, 0) in an odd number of steps, and for each odd value of n ≥ 1, there is only a
single path. So

f(0,0),(0,0)(n) = 0 if n is even and f(0,0),(0,0)(n) = p(n−1)/2 (1− p) if n is odd

b) (2 points) Prove that the chain X is recurrent.

Answer: The chain is recurrent, as

f(0,0),(0,0) =
∑
n≥1

f(0,0),(0,0)(n) =
∑
k≥0

f(0,0),(0,0)(2k + 1) =
∑
k≥0

pk (1− p) =
1− p
1− p

= 1
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c) (2 points) Prove that the chain X is also positive-recurrent.

Hint: Compute E(T(0,0) |X0 = (0, 0)), using the identity:
∑

k≥0 k p
k = p

(1−p)2 valid for 0 < p < 1.

Answer: The computation gives

E(T(0,0) |X0 = (0, 0)) =
∑
n≥1

nP(T(0,0) = n |X0 = (0, 0)) =
∑
k≥0

(2k + 1) f(0,0),(0,0)(2k + 1)

=
∑
k≥0

(2k + 1) pk (1− p) =

(
2

p

(1− p)2
+

1

1− p

)
(1− p) =

2p+ 1− p
1− p

=
1 + p

1− p
< +∞

so the chain is positive-recurrent.

d) (3 points) Compute the stationary distribution π of the chain X.

Answer: By the theorem seen in class, π(0,0) = 1
E(T(0,0) |X0=(0,0)) = 1−p

1+p . Also, we have

π(0,k+1) = π(0,k) p so by induction, we obtain π(0,k) = pk π(0,0) for k ≥ 1

By a similar reasoning, we obtain for all 1 ≤ j ≤ k:

π(j,k) = (1− p)π(0,k) = (1− p) pk π(0,0)

and one checks that indeed ∑
k≥0

π(0,k) +
∑

k≥j≥1
π(j,k) = 1

e) (1 point) Is π also a limiting distribution? Justify.

Answer: Yes, as the chain is not only irreducible and positive-recurrently, but also aperiodic (self-
loop in (0, 0)).

f) (1 point) Does detailed balance hold? Justify.

Answer: No, as there are one-way arrows in the transition graph.

Exercise 2. (10 points)

Let N ≥ 5 be an integer and consider two Markov chains (Xn, n ≥ 0), (Yn, n ≥ 0) defined on the
same state space S = {0, 1, 2, . . . , N−1} and with the same transition matrix P = (pij)i,j∈S , where

pij =


p if j = i+ 1 (mod N)

q if j = i− 1 (mod N)

0 otherwise

and p, q > 0 are such that p + q = 1. Let also (Zn, n ≥ 0) be the Markov chain on S defined as
follows:

Zn = Yn −Xn (mod N) for n ≥ 0
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a) (2 points) Compute the transition matrix Q = (qij)i,j∈S of the chain Z.

Answer: The computation gives

qij =


p2 + q2 if j = i

pq if j − i = +2 (mod N)

pq if j − i = −2 (mod N)

which is a symmetric matrix, even if P isn’t.

b) (2 points) Compute the eigenvalues λ0, λ1, . . . , λN−1 of the matrix Q (for a generic value of
N).

Hint: If A = circ(c0, c1, . . . , cN−1) is an N ×N circulant matrix, i.e.

A =



c0 c1 c2 · · · cN−2 cN−1
cN−1 c0 c1 cN−2

. . .
. . .

. . .
. . .

. . .
. . .

c2 cN−1 c0 c1
c1 c2 · · · cN−2 cN−1 c0


then its eigenvalues are given by

λk =

N−1∑
j=0

cj exp(2πijk/N) k = 0, . . . , N − 1

Please note that with this notation, the eigenvalues λ0, λ1, . . . , λN−1 are not ordered.

Answer: The computation gives

λk = p2 + q2 + 2pq cos(4πk/N) k = 0, . . . , N − 1

Note that all these (unordered) eigenvalues are non-negative (irrespective of the values of p and q).

c) (3 points) For what values of N ≥ 5 is the Markov chain Z ergodic? For these values, compute
the limiting and stationary distribution of the chain. Is detailed balance satisfied? Justify all your
answers.

Answer: In order for the chain to be irreducible, N needs to be odd, in which case the chain is also
aperiodic, and therefore ergodic (as it is also finite). Because the matrix Q is doubly-stochastic,
the stationary distribution is uniform, and detailed balance holds, as Q is also symmetric.

d) (2 points) For the values of N found in part c), compute the spectral gap γ of the chain Z.

Answer: The eigenvalue which is the closest to +1 is the one with k = (N ± 1)/2, so

γ = 1−(p2+q2+2pq cos(2π/N) = 1−p2−(1−p)2−2p(1−p) cos(2π/N) = 2p(1−p) (1−cos(2π/N))
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e) (1 point) For large values of N (still satisfying the condition found in part c), how large should
n be (approximately) in order to ensure that the distribution of Zn is ε-close (in total variation
distance) to the stationary distribution?

Hint: You may use the approximation cos(x) ' 1− x2

2 , valid for small values of x.

Answer: The spectral gap is given in this case by γ ' 2p(1−p) 2π2/N2, so in order to ensure that
the total variation distance is close to zero, at least Θ(N2) steps (and more precisely Θ(N2 logN)
steps) are needed.

BONUS f) (2 points) What is the average time between two encounters of the chains X and Y ?
Does it depend on the values of N , p and q? If yes, how?

Answer: When N is odd, this average time between two encounters of X and Y is N , because
the stationary distribution of the chain Z is uniform on S = {0, 1, . . . , N − 1}.

When N is even, the chain Z is not ergodic and only visits states with the same parity, so in this
case, the average time between two encounters of X and Y is N/2.

So these average times do depend on the value of N , but not on the values of p and q.
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