Midterm Solutions

Exercise 1. (10 points)

Consider the Markov chain $\left(X_{n}, n \geq 0\right)$ with state space $S=\{(j, k), j, k \in \mathbb{N}, j \leq k\}$ and transition probabilities given by

$$
\begin{cases}p_{(0,0),(0,0)}=1-p & p_{(0, k),(0, k+1)}=p \\ \text { for } k \geq 0 \\ p_{(0, k),(1, k)}=1-p \text { for } k \geq 1 & p_{(j, k),(j+1, k)}=1 \quad \text { for } 1 \leq j \leq k \\ p_{(k, k),(0,0)}=1 \text { for } k \geq 1 & \end{cases}
$$

where $0<p<1$. Here is the corresponding transition graph for the first states:

a) (1 point) Compute $f_{(0,0),(0,0)}(n)=\mathbb{P}\left(T_{(0,0)}=n \mid X_{0}=(0,0)\right)$ for a generic value of $n \geq 1$. $N B: T_{(0,0)}=\inf \left\{n \geq 1: X_{n}=(0,0)\right\}$.

Answer: First note that the chain is irreducible, and that starting in $(0,0)$, it is only possible to come back to $(0,0)$ in an odd number of steps, and for each odd value of $n \geq 1$, there is only a single path. So

$$
f_{(0,0),(0,0)}(n)=0 \text { if } n \text { is even } \quad \text { and } \quad f_{(0,0),(0,0)}(n)=p^{(n-1) / 2}(1-p) \text { if } n \text { is odd }
$$

b) (2 points) Prove that the chain X is recurrent.

Answer: The chain is recurrent, as

$$
f_{(0,0),(0,0)}=\sum_{n \geq 1} f_{(0,0),(0,0)}(n)=\sum_{k \geq 0} f_{(0,0),(0,0)}(2 k+1)=\sum_{k \geq 0} p^{k}(1-p)=\frac{1-p}{1-p}=1
$$

c) (2 points) Prove that the chain X is also positive-recurrent.

Hint: Compute $\mathbb{E}\left(T_{(0,0)} \mid X_{0}=(0,0)\right)$, using the identity: $\sum_{k \geq 0} k p^{k}=\frac{p}{(1-p)^{2}}$ valid for $0<p<1$.
Answer: The computation gives

$$
\begin{aligned}
& \mathbb{E}\left(T_{(0,0)} \mid X_{0}=(0,0)\right)=\sum_{n \geq 1} n \mathbb{P}\left(T_{(0,0)}=n \mid X_{0}=(0,0)\right)=\sum_{k \geq 0}(2 k+1) f_{(0,0),(0,0)}(2 k+1) \\
& =\sum_{k \geq 0}(2 k+1) p^{k}(1-p)=\left(2 \frac{p}{(1-p)^{2}}+\frac{1}{1-p}\right)(1-p)=\frac{2 p+1-p}{1-p}=\frac{1+p}{1-p}<+\infty
\end{aligned}
$$

so the chain is positive-recurrent.
d) (3 points) Compute the stationary distribution π of the chain X.

Answer: By the theorem seen in class, $\pi_{(0,0)}=\frac{1}{\mathbb{E}\left(T_{(0,0)} \mid X_{0}=(0,0)\right)}=\frac{1-p}{1+p}$. Also, we have

$$
\pi_{(0, k+1)}=\pi_{(0, k)} p \quad \text { so by induction, we obtain } \quad \pi_{(0, k)}=p^{k} \pi_{(0,0)} \quad \text { for } k \geq 1
$$

By a similar reasoning, we obtain for all $1 \leq j \leq k$:

$$
\pi_{(j, k)}=(1-p) \pi_{(0, k)}=(1-p) p^{k} \pi_{(0,0)}
$$

and one checks that indeed

$$
\sum_{k \geq 0} \pi_{(0, k)}+\sum_{k \geq j \geq 1} \pi_{(j, k)}=1
$$

e) (1 point) Is π also a limiting distribution? Justify.

Answer: Yes, as the chain is not only irreducible and positive-recurrently, but also aperiodic (selfloop in $(0,0))$.
f) (1 point) Does detailed balance hold? Justify.

Answer: No, as there are one-way arrows in the transition graph.

Exercise 2. (10 points)

Let $N \geq 5$ be an integer and consider two Markov chains ($X_{n}, n \geq 0$), ($Y_{n}, n \geq 0$) defined on the same state space $S=\{0,1,2, \ldots, N-1\}$ and with the same transition matrix $P=\left(p_{i j}\right)_{i, j \in S}$, where

$$
p_{i j}= \begin{cases}p & \text { if } j=i+1(\bmod N) \\ q & \text { if } j=i-1(\bmod N) \\ 0 & \text { otherwise }\end{cases}
$$

and $p, q>0$ are such that $p+q=1$. Let also $\left(Z_{n}, n \geq 0\right)$ be the Markov chain on S defined as follows:

$$
Z_{n}=Y_{n}-X_{n}(\bmod N) \text { for } n \geq 0
$$

a) (2 points) Compute the transition matrix $Q=\left(q_{i j}\right)_{i, j \in S}$ of the chain Z.

Answer: The computation gives

$$
q_{i j}= \begin{cases}p^{2}+q^{2} & \text { if } j=i \\ p q & \text { if } j-i=+2(\bmod N) \\ p q & \text { if } j-i=-2(\bmod N)\end{cases}
$$

which is a symmetric matrix, even if P isn't.
b) (2 points) Compute the eigenvalues $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{N-1}$ of the matrix Q (for a generic value of $N)$.

Hint: If $A=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{N-1}\right)$ is an $N \times N$ circulant matrix, i.e.

$$
A=\left(\begin{array}{cccccc}
c_{0} & c_{1} & c_{2} & \cdots & c_{N-2} & c_{N-1} \\
c_{N-1} & c_{0} & c_{1} & & & c_{N-2} \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
c_{2} & & & c_{N-1} & c_{0} & c_{1} \\
c_{1} & c_{2} & \cdots & c_{N-2} & c_{N-1} & c_{0}
\end{array}\right)
$$

then its eigenvalues are given by

$$
\lambda_{k}=\sum_{j=0}^{N-1} c_{j} \exp (2 \pi i j k / N) \quad k=0, \ldots, N-1
$$

Please note that with this notation, the eigenvalues $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{N-1}$ are not ordered.

Answer: The computation gives

$$
\lambda_{k}=p^{2}+q^{2}+2 p q \cos (4 \pi k / N) \quad k=0, \ldots, N-1
$$

Note that all these (unordered) eigenvalues are non-negative (irrespective of the values of p and q).
c) (3 points) For what values of $N \geq 5$ is the Markov chain Z ergodic? For these values, compute the limiting and stationary distribution of the chain. Is detailed balance satisfied? Justify all your answers.

Answer: In order for the chain to be irreducible, N needs to be odd, in which case the chain is also aperiodic, and therefore ergodic (as it is also finite). Because the matrix Q is doubly-stochastic, the stationary distribution is uniform, and detailed balance holds, as Q is also symmetric.
d) (2 points) For the values of N found in part c), compute the spectral gap γ of the chain Z.

Answer: The eigenvalue which is the closest to +1 is the one with $k=(N \pm 1) / 2$, so
$\gamma=1-\left(p^{2}+q^{2}+2 p q \cos (2 \pi / N)=1-p^{2}-(1-p)^{2}-2 p(1-p) \cos (2 \pi / N)=2 p(1-p)(1-\cos (2 \pi / N))\right.$
e) (1 point) For large values of N (still satisfying the condition found in part c), how large should n be (approximately) in order to ensure that the distribution of Z_{n} is ε-close (in total variation distance) to the stationary distribution?
Hint: You may use the approximation $\cos (x) \simeq 1-\frac{x^{2}}{2}$, valid for small values of x.
Answer: The spectral gap is given in this case by $\gamma \simeq 2 p(1-p) 2 \pi^{2} / N^{2}$, so in order to ensure that the total variation distance is close to zero, at least $\Theta\left(N^{2}\right)$ steps (and more precisely $\Theta\left(N^{2} \log N\right)$ steps) are needed.

BONUS f) (2 points) What is the average time between two encounters of the chains X and Y ? Does it depend on the values of N, p and q ? If yes, how?

Answer: When N is odd, this average time between two encounters of X and Y is N, because the stationary distribution of the chain Z is uniform on $S=\{0,1, \ldots, N-1\}$.

When N is even, the chain Z is not ergodic and only visits states with the same parity, so in this case, the average time between two encounters of X and Y is $N / 2$.

So these average times do depend on the value of N, but not on the values of p and q.

