Astrophysics III: Stellar and galactic dynamics

Exercises

Problem 1:

Derive the equations of motion of a particle in a potential Φ inside a uniformly rotating reference frame $\vec{\Omega}$, the Hamiltonian of which is:

$$
\begin{equation*}
H(q, p)=\frac{1}{2} \vec{p}^{2}+\Phi(\vec{q})-\vec{\Omega} \cdot(\vec{q} \times \vec{p}) \tag{1}
\end{equation*}
$$

Problem 2:

Using surfaces of section, explore the following potentials with the script mapping.py (use the help for more information and look at the beginning of the file for some examples):
a) Plummer-Schuster:

$$
\Phi(r)=-\frac{G M}{\sqrt{e^{2}+r^{2}}}
$$

b) Miyamoto-Nagai:

$$
\Phi(R, z)=-\frac{G M}{\sqrt{R^{2}+\left(a+\sqrt{b^{2}+z^{2}}\right)^{2}}}
$$

b) Harmonic:

$$
\Phi(x, y, z)=\frac{1}{2} \omega_{x}^{2} x^{2}+\frac{1}{2} \omega_{y}^{2} y^{2}+\frac{1}{2} \omega_{z}^{2} z^{2}
$$

The aim of this problem is to understand what happens when stacking potentials on top of each other. You can add a potential by giving it a nonzero total mass as a command line argument. You can start by stacking some potentials and plotting them.

In order to get surface of section, remove the option --plotpotential. Depending on the problem, you will get one or two figures.

- Figure 1 displays the phase space $\mathrm{x}-\mathrm{vx}$ of your orbit
- If your orbit is circular or quasi-circular, Figure 2 will display the trajectory in the $\mathrm{x}-\mathrm{y}$ plane.

Try various potentials and various initial conditions for your test particle. After a few runs, try to predict the shape of the phase space and orbits once the parameters are chosen, and see if your predictions are close to the plots.

Problem 3:

Using surfaces of sections, explore numerically the phase space of the logarithmic potential:

$$
\Phi(x, y)=\frac{1}{2} V_{0}^{2} \ln \left(R_{\mathrm{c}}^{2}+x^{2}+\frac{y^{2}}{q^{2}}\right)
$$

q here is an arbitrary scalar, not a coordinate!
a) in a non-rotating reference frame,
b) in a uniformly rotating reference frame. In this case, determine analytically the Lagrange positions along the x axis.

