Astrophysics III: Stellar and galactic dynamics Solutions

Problem 1:

We are dealing with the Hamiltonian of the form

$$
\begin{equation*}
H(q, p)=\frac{1}{2} \vec{p}^{2}+\Phi(\vec{q})-\vec{\Omega} \cdot(\vec{q} \times \vec{p}) \tag{1}
\end{equation*}
$$

We set the rotation to be along the z axis, and for it to be uniformly rotating, it needs to be constant, i.e.

$$
\vec{\Omega}=\left(\begin{array}{l}
0 \\
0 \\
\Omega
\end{array}\right) \quad \Rightarrow \vec{\Omega} \cdot(\vec{q} \times \vec{p})=\Omega\left(q_{x} p_{y}-p_{x} q_{y}\right)
$$

The equations of motion in canonical coordinates are given by Hamilton's equations:

$$
\begin{equation*}
\dot{p}=-\frac{\partial}{\partial q} H(p, q), \quad \dot{q}=\frac{\partial}{\partial p} H(p, q) \tag{2}
\end{equation*}
$$

in our case:

$$
\begin{aligned}
\dot{q}_{x} & =p_{x}+\Omega q_{y} \\
\dot{q}_{y} & =p_{y}-\Omega q_{x} \\
\dot{p}_{x} & =-\frac{\partial}{\partial q_{x}} \Phi(q, p)+\Omega p_{y} \\
\dot{p}_{y} & =-\frac{\partial}{\partial q_{y}} \Phi(q, p)-\Omega p_{x}
\end{aligned}
$$

The relations between cartesian and canonical coordinates are:

$$
\begin{aligned}
q_{x} & =x \\
q_{y} & =y \\
p_{x} & =\dot{x}-\Omega y \\
p_{y} & =\dot{y}+\Omega x
\end{aligned}
$$

Problem 2:

There are no formal solutions here. Have a look at the provided text file for ideas on how to run the programs.

Problem 3:

To get the Lagrangian points of a rotating potential, we need to consider the effective potential

$$
\begin{equation*}
\Phi_{e f f}=\Phi-\frac{1}{2} \Omega^{2}\left(x^{2}+y^{2}\right)=\frac{1}{2} V_{0}^{2} \ln \left(R_{c}^{2}+x^{2}+\frac{y^{2}}{q^{2}}\right)-\frac{1}{2} \Omega^{2}\left(x^{2}+y^{2}\right) \tag{3}
\end{equation*}
$$

The Lagrangian points along the x axis $(\Rightarrow y=0)$ lie where the first derivative of the effective potential is zero, namely:

$$
\frac{\partial}{\partial x} \Phi_{e f f}(x, y=0)=x\left(\frac{V_{0}^{2}}{R_{c}^{2}+x^{2}}-\Omega^{2}\right)=0
$$

which admits as solutions $x=0$ and

$$
x= \pm \sqrt{\frac{V_{0}^{2}-\Omega^{2} R_{c}^{2}}{\Omega^{2}}}
$$

Therefore, there is always a Lagrangian point at $x=0(\mathrm{~L} 3)$ and two others (L1 and L2) if the expression for x we found is real, i.e. whenever $V_{0}>\Omega R_{c}$.

