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The need for additional plasma heating

,Need to fill in ‘gap’
between ohmic heating
region and a-heating,
where losses dominate



3rd Generation
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2nd Generation Q = fusion power / input

~1980 ower
1st Generation p

Tokamak ~1970

Concept Q > 5: plasma heating is
e dominated by fusion by-

1 products: burning plasma
1017 1018 101° 1020 1021 1022

Fusion Triple Product - density (particles/m3) x confinement time (s) x Temperature (keV)




=PrL ITER

Demonstration of the scientific and technological
feasibility of fusion energy for peaceful purposes

Burning plasma
Q >10
I:)fusionZ S00MW
for ~500s
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NB Injector
NBI 33 MW N/A
ICRH 20 MW 40-55 MHz
LH 20 MW (second stage) 5 GH:z
ECRH 24 MW 170 GHz

P2 antenna

Lower Hybrid
Launcher




cPrL ITER plasma sequence

Plasma Initiation

Begin pulse Burn

Rampup

200 0 time(s) lsor tsop (~400s) 600 700 900 1600

Current ‘ ‘

‘ End Pulse
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Heating by neutral beam injection
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=PrL Basic idea of Neutral Beam Heating

N

Energetic hydrogen

Neutral Beam
Injection
Heating

Energetic 1ons could be injected into plasma, to give energy to
colder plasma particles, but B-field would prevent energetic 1ons
penetration

Idea: use neutral particles at high energy to get into the plasma,
then let them be 10nized by the plasma itself, so that they become
= swiss @ beam of energetic 10ns
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Neutral Beam Injector

Charge Exchange
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=EP~L Physical processes occurring during beam
penetration in plasma, leading to ionization

Charge exchange: Hy +H] — H + H,
Ionization by ions: Hy, +HS — Hf + HY +e”
Ionization by electrons: Hyp +e~ — H;')' + 2e~

Energy of hydrogen beam atoms
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Fig. 5.3.1 Cross-sections for charge
exchange and ionization by plasma ions

o7 (protons, deuterons, or tritons) and the
~ i’e L effective cross-section (o v, ) /vy for

=8 ionization by electrons, as functions of
B Swiss i1 ! Lo L T the _neutrfal be;“:ienerg)’t; The CTOS;'
P 1 Mey sections for a hydrogen beam are the
CI:r?tgr? ke 100 keV same as those for a deuterium beam

Energy of deuterium beam atoms having twice the energy.



=Pr-L Evolution of beam intensity

Neutral
beam
Z*T dl < Ople >
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P-L  Beam penetration in a 102° m-3 plasma

1.V e T e T T
Neutral
0.8 fraction
0.6 —
04—
Fig. 5.5.3 Graphs showing the energy :
dependence of (i) the equilibrium neutral 02 |- Penetration put |
fraction in a deuterium beam and (ii) the ; distance (m)
penetration distance of the neutrals in a
plasma of density # = 10°*m . The change
of behaviour of the penetration distance at 0 l ] e | |
around 100 keV indicates the transition from 10 20 40 60 80 100 200 300
charge exchange dominance to ionization
dominance. Beam energy (keV)

For large plasma (>1m) we need high beam energies (>300keV)
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“PFL Neutral Beam Injector
Neutralisation
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NBI: neutralisation efficiency

Efficiency for positive 1ons goes down for high energies

Negative 1on neutralisation easier due to low affinity
(0.75e¢V) of additional electron: H+H,=H + H, + ¢

For large, dense plasmas we need negative 1on beams
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=PrL NBI in JET

Radial and tangential injection; 2x8 injectors 80keV
(H"), 130keV (D7) — up to 34MW
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=PrL NBI in JET

Deflection

Calorimeter electromagnet

Metallic vacuum seals

To JET

Plas7

Neutral Beam

2906 100"

Eight
lon Sources

- - Vs

Beam divergence must be Io to avoid damaging
beam duct and outgassing from beam-wall
interactions, which would block beam propagation

Porcelain
insulators and seals

Neutraliser gas ‘
pipelines
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cPrFL  For ITER we need negative ion beams
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Figure 15.5 Neutralization fraction vs. beam energy for positive and negative ion beams. Also plotted
is the penetration depth for ny,y = 1.5. (Wesson, J. (2004). Tokamaks, third edition. Oxford: Clarendon

Press).

M Swiss
Plasma
Center



=PFL Which species will be heated by the beam?
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cPrL ITER neutral beams for H&CD, diagnostic

Heating and current drive: 2 tangential D- (1MeV, 33MW,3600s)
Charge exchange diagnostic: 1 radial H (100keV, 3MW, 400s)

P / s>
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cPrL
| ITER neutral beams for H&CD, diagnostic
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cPrL ITER neutral beams for H&CD, diagnostic

— Multi-Aperture Multi-Grid Accelerator (200 kV steps) H ‘ B .
— RF driven negative hydrogen ion source -

>

()

} ‘ y

f\ j‘}'i;
‘A

bellows

Gate valve calorimeter .
esidua .
or DU D neutraliser
Negative ions are MaMuG accelerator
produced on Cs- RF ion source
adsorbed surfaces with
low work function , : . .
B Swiss Large current density (~300A/m?), high uniformity (%10%) over ~2m?
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cPrL ITER neutral beams for H&CD, diagnostic
Test facility for beam source SPIDER — Padua, Italy

ITER Neutral Beam
Test Facility - Ty

a tour of the site
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=PrFL ITER neutral beams for H&CD dlagnostlc

Test facility for beam source |
SPIDER — Padua, Italy
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=PrL Energetic ions from additional heating

Burning plasma regime 1s reached using external heating and
current drive

Electron cyclotron heating

- S N S .
L]
- -

’ Neutral beam heating =N

Transmission Line
~

-
N e . e e e e - — Radio Frequency /
(RF) Heating

Ohmic Heating

Surrent
Electromagnetic
Wav‘_es

Antenna

Based on creation of ~MeV
ions, then thermalised by

collisions
Energetic hydrogen
atoms
Neutral Beam

Injection

Heating
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cPrL Energetic ions from Neutral Beam Injection

Ions at ~100keV in present devices, ~1MeV in ITER
Injection geometry determines initial orbits

If tangential, mostly passing orbits, collisions scatter into trapped
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Heating by waves
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cPrL
Heating by waves

Reminder of waves dispersion relation (T ~ 0)

Perpendicular to B,

no propagation for XXM

----------------------------------------------
- g ——————

upper hybnd

Transmission Line

Radio Frequency /
(RF) Heating

--------------------------------------------------

Antenna

...................................................

: m ----r--------:.-----------------------—-—----------—----------—-
\Electromagnetic LH| . I ————
Way ¢ et lower hybnd
_ ; XM
v compressional Alfvén waves
-
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Heating by waves

If T >> 0 (hot plasma - kinetic model needed)

Wave-particle resonances occur at o -k:'v=nQ.(n=0, 1, 2,...)

Ions or electrons feel in their reference frame a constant force when the
E-field is in phase with their motion

Cyclotron resonances also for waves that do not propagate along B,

Finite k| and relativistic effects, for electrons, €3.=e B,/m(v), make
the resonance velocity dependent, i.e. of finite width, effective for the
energy exchange between particles and waves
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=PFL  ECRH - Ordinary mode (E Il B,)
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=PFL  ECRH - eXtraordinary mode (E_ B)
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=PrL

Cut-offs:

Resonances:

ECRH - Accessibility

we 02
X = -‘;g-(oc n) Y= c—.,é(x B3)

O-mode: X =1
X—-mode: Y =(1-X)?

w=uwyy Y=1-X
w = I, Y:T}(I,O.QS,...)

Seple CMA Slagram for X and O mode, perpendoular injection
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Figure 9.3: Clemmow-Mullaly-Allis diagraum for X and O mode. Wave trajectories are shown for 1* and 2
harmonic myection and for different core plasma densities. Note that for low field side X1 injection

- gg'ssria the wave first encounters a cutoff. X2 may encounter a cutoff or resonance, depending on the density.
Center O mode has a higher densty hmit but will eventually be cut off at the plsma frequency.
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PFL ECRH - Possible microwave sources
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cPrL ECRH - Accessibility

= ¢
X :_—%(ocn) Y o= —£(x 132)
Cut-offs:
O—-mode: X =1
X—mode: Y =(1-X)?
Resonances:

w=wyy Y=1-X
w=I Y= 7}(1,0.25, )

Seple CMA Slagram for X and O mode, perpendcular injection

a] & . TCV (fce:4 1 GHZ)
" can use n=2 or n=3
- X2 (83GHz) or X3 (118GHz)

ITER (f.,.=170GHz)

must use n=1
01 (170 GHz)

Figure 9.3: Clemmow-Mullaly-Allis diagraun for X and O mode. Wave trajectories are shown for 1* and 2™
harmonic myection and for different core plasma densities. Note that for low fiedd side X1 injection
the wave first encounters a cutoff. X2 may encounter a cutoff or resonance, depending on the density.
O mode has a higher densmty hmit but will eventually be cut off at the plsma frequency.
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ECRH - Microwave source: gyrotron

Principle based on Cyclotron Resonance Maser instability

COLLECTOR
TO DUMP THE

SPIRALING ELECTRON
/ BEAM
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FIELD
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<«——QUTPUT WINDOW

Three “ingredients’ :

Magnetic field
Guides the e
Determines the frequency

Q Q)

W = - 2, Cyclotron frequency

Y ooy

Oscillation frequency

Relativistic factor

Annular electron beam
Source of free energy

Resonant cavity

Cylinder with a smoothly varying
cross-section

Resonant interaction between
electrons and cavity mode (TE,, )



The gyrotron

Collector

Electron Beam

Dimple wall
mode converter (+30kV)

Cavity (+30kV)

Beam duct (+30kV) Collector sweeping coils

Output window (CVD diamond)

Output Beam

Anode (+30kYV)

Cathode (-50kV)
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cPrL The gyrotron

Gyrotron W7 - X |

collector @ ground pot.

/AC &DC
~~~" normalconducting coils

3¢ mirror @ ground pot..
) /CVD - dlamond window

/gausslan RF - beam

=1 & 2v mirror @ +30 kV

_~resonator @ +30 kV

" superconducting coils

T electron gun @ -50 kV
M Swiss
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Center



=PrL A modern ECRH system: TCV

New X3 Top Launcher
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cPrL ECRH system on ITER

24 gyrotrons
IMW each
170GHz

Gyrotrons

HVPS

Equatorial
Launcher

Upper

M Swiss
Swiss Launchers

Center



=PrL 1TER upper launcher (Swiss contribution)

Front steering launcher of 170 GHz microwaves

Goal: heat locally and stabilize plasma instabilities
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=PrL we already work on EC systems for DEMO

108 gyrotrons (216MW), 7200s

Break down and plasma ramp-up
Bulk heating and NTM control (core)

Radiative instability control (edge) .

N\ NTM
\ stabilsation
N
\\

\\\ /

\
:

\ y

Plasma ramp-down

SPC contribution - l[auncher

Steering mirror for
g = 3/2 surface NTM control

oGl N
Sa O aY : &

i\ /¥ Politecnico
Qi 4-: i Torino

\ ‘:i“"’ Karlsruhe Institute of Technology

s THALES
S ,- T[;SCIJX Building a future we can all trust

M Swiss 2 x 3 waveguid =R
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cPrL ICRH
Perpendicular wave dispersion relation

o compressional Alfvén waves

We rely on the fast wave, 1.e. compressional Alfven (fast
= swiss  Magnetosonic) wave, to bring energy to antenna to plasma

Plasma
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=PFL JCcRH - Antenna excitation of fast wave

Fast wave ’ |

Strap
antenna
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PrL
ICRH - Main principles

Tokamak plasmas contain more than one 1on species:
dispersion relation 1s more complicated and allows different
schemes for wave absorption

1t harmonic of a minority ion (e.g. ® = . or ® = Q j1e3)
27d harmonic of main ion species (e.g. in 50:50 DT plasmas o= 2Q,7)

Ion-10n hybrid resonance (e.g. in 50:50 DT plasmas Q. < ® <Q.p)
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JET
Vacuum
Vessel

o

M Swiss (7>
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ICRH - JET system

Antenna with

ceramic support Double vacuum
feed through

O

Interspace
pumping system
(getter)

JG04.93-5¢

) EUROfusion

Coaxial
transmission lines

Concrete Wall

4x2MW ICRH
Generators

Power supplies

<+— Test load

Switches



=PrlL ICRH - ITER antenna

40 — 55MHz, 20MW, 3600s, 8 coaxial lines, antenna on port-plug

Courtesy of ITER Organisation
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PrL ICRH modeling

Fast wave has large vacuum A — cannot be described 1n
simple Fourier formalism

Ex. of wave field from full wave calculation of 2nd

harmonic T ICRH in ITER (53MHz, 20MW)
Courtesy of PBonoli, E.F.Jaeger et al., PoP 15, 072513 (2008)

AORSA ITER Simulation of R
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EPF

L Energetic ions from additional heating

Burning plasma regime 1s reached using external heating and
current drive
_ _Elgtzpz;cyclatmn_he_ating

Ion cyclotron heating ~’\

-

7
~

T T Nedtrat bedm feating

Transmission Line

Radio Frequency /
(RF) Heating

Ohmic Heating

Surrent
Electromagnetic
Wav‘_es

Antenna

Based on creation of ~MeV
ions, then thermalised by

collisions
Energetic hydrogen
atoms
Neutral Beam
Injection
Heating
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cPrL ICRH and energetic ions

Wave fields at ~€2; give enegy to perpendicular motion
of minority 1ons

Strongly anisotropic distribution function: mostly trapped orbits
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cPFL  The Lower Hybrid wave — current drive

Wave-particle
resonance

fLH =k -v/21 R
~ 1-37116:1/2[1<<3V] /7\~| | [cm] :l;H, 3

|GHZ]

Electrostatic Waves - i

(5B~0)

XM

/" compressional Alfvén waves

v
~

of wkec |

JET

fLH ~ 245GHZ

il ~ ITER

lower hybnd

fLH ~ SGHZ

Particle Acceleration

—>

e Wave Propagation
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=PrL The Lower Hybrid system in JET

Concrete Test Loads
Wall

Vacuum Windows \ =

JET
Vacuum
Vessel
LHCD g
Antenna :

Circulators

Wave Generators
(Klystrons)

TMW

Main Waveguide
Transmission Line

" rme  LH waves are electrostatic: need antenna in the plasma

Center
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To launch propagating wave for CD, needs
well defined spectrum => phasing of many
waveguides ( “grill )

To couple to plasma needs proximity
Interaction between antenna and plasma

Wave must reach core where CD i1s of interest
I Swiss
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=PrL The LH system for ITER

Frequency SGHz, 20MW will be 1nstalled for
second stage of heating upgrades
Mostly for off-axis current drive




cPrL ITER Heating systems
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NB Injector

NBI 33 MW N/A

ICRH 20 MW 40-55 MHz
LH 20 MW (second stage) 5 GH:z
ECRH 24 MW 170 GHz

<
/A
& &
4
Z3

antenna

Discussion: pros and cons of
different methods ?

Lower Hybrid
Launcher




