Exercise Session 8: Reliability over an

Unreliable Channel - Solutions
COM-208: Computer Networks

The goal of this lab is to undestand what it means to provide reliability over an unreliable
channel (which is what TCP does).

Please make sure you have completed Lab5 before you try this one. To do the lab, you
will need some initial code that you can get from Moodle.

You will develop a distributed application that reliably transfers a large file from
one computer (we will call it the Client) to another (called the Server) and prints the
file’s contents on the Server. But there’s a catch: this application must use UDP as the
transport-layer protocol; given that UDP does not provide reliability, your application
will need to provide it itself.

More specifically, your application will perform the following tasks:

e At the Client, break the file into packets.

e Transfer each packet from the Client to the Server, as many times as needed to
transfer it successfully.

o At the Server, assemble the file from the packets (ensuring the packets are put in
the correct order).

You will build a Stop-and-Wait protocol, very similar to the rdt3.0 protocol from the
book.

Please find the implementation of both the Stop-and-Wait protocol
in solution_ code.zip. You can import .zip file into Eclipse or IntelliJ
following the steps shown in step 0 of the Milestones section below.

The Stop-and-Wait Protocol

Stop-and-Wait Sender Stop-and-Wait Receiver

1. Data received from above. 1. Packet with expected | sequence number

When data is received from
above, the Stop-and-Wait
sender puts it in a packet
and assigns it the next
available sequence number.

If the sender is not currently
waiting for an ACK, the
packet is sent and a timer is
started; otherwise it is

received | for the first time. | | If the
sequence number of | the received packet is
| equal to the sequence | number of the
packet the | receiver is expecting to |
receive (1 + #last received packet), the
packet's payload is | delivered to the upper
| layer and an ACK packet is | returned to
the sender. | | | |

. Packet with sequence | number smaller than

the | expected sequence number | is received

buffered. by 1. | | In this case, an ACK must | be
generated for this | packet, even though this
| is a packet the receiver | previously
acknowledged. | |

3. Otherwise. | | Ignore packet. | | | | |

2. Timeouts.

Timers are used to protect
against lost packets. If a
timeout occurs, the packet is
re-transmitted.

3. ACK received.

If an ACK is received for the
packet currently pending an
acknowledgment, the
Stop-and-Wait sender marks
the packet as having been
received.

If there are any packets in
the buffer, the first of these
packets is sent and a timer is
started.

There are the following basic differences with respect to the book version:

e We are using int sequence numbers, in place of only 0 and 1.
e We are not including packet length or checksum in the packets of our protocol,
because UDP provides these.

Milestones

0. Running the base code

To start working, you can use the base implementation available on Moodle (ini-
tial_code.zip). You can import this .zip file into Eclipse as a Java project or into
IntelliJ following the next steps:

1. Select File > New > “Project from Existing Sources” in the upper part of the
window.

2. Choose the directory containing the code.

3. Select “Import project from external model” with “Eclipse” as an option in the

bottom window (see figure below).

Import Project

4. Press “Next” until prompted to select the project to import (see figure below). You
should see “tp6__initial code” already selected.

Import Project

/| tp6 initial

5. Select the project SDK, we recomend Java 11 or higher.

1. Transfer a single UDP packet from Client to Server.
//ReliableClient. java

public ReliableClient(String address, int port, int timeout) {
try {
// Open the UDP socket.
//@T0DO

// Initialize the filestream we will be using to read data from
this.fis = new FileInputStream("Monalisa.txt");
} catch (IOException e) {
e.printStackTrace();
}
}

2. Read a small file and break it up into 10-byte packets.

Don’t worry yet about reliability, e.g., acknowledgments etc.

//ReliableClient. java
public void SendFile() {
boolean successFlag = true;

int length;

try {
// Read a fixed length of data
int bufferSize = ...
byte[] data = new byte[bufferSize];

// Until we finish sending the file.

while ((length = fis.read(data)) != -1) {
// Create a UDP packet
//@TODO
// Send it
//@T0DO

// And wait for an ACK
//@TOD0
}
} catch (IOException e) {
e.printStackTrace() ;
}
}

3. Make the Server send an ACK for every packet it receives.

//ReliableServer. java
public void listen() {
try {
while (true) {
// Allocate enough space for the biggest possible packet
//@T0DO

// Receive the new packet
//@T0DO

// If we expect this packet, send data to upper layer.
// In this case, we simply print the bytes
//@T0DO

// ACK packet if it is the one we have been expecting.
// Otherwise, do nothing (we drop the packet silently)
//@T0DO
}
}
catch (Exception e) {
e.printStackTrace();
}
}

4. Make the Client wait for the ACK before transmitting the next packet.

So, if a packet gets lost, the Client gets permanently stuck (which is OK for now).

Tip: To simulate packet loss, you can make the Server ignore a particular packet.

//ReliableClient. java
public void SendFile() {
boolean successFlag = true;

int length;

try {

// Until we finish sending the file...

while ((length = fis.read(data)) != -1) {
// Create a UDP packet
//@T0ODO
do {
// Send it
//@TODO

// And wait for an ACK
//Q@T0ODO
} while (successFlag == false);

}
} catch (IOException e) {
e.printStackTrace();

¥
}

5. Add timeouts and retransmissions.

Use the setSoTimeout option on a socket object. This will make the Client timeout if it
waits too long for an ACK.

Remember to catch the exception that sockets with this option throw; you can use it to
implement the retransmission functionality.

//ReliableClient. java
public ReliableClient(String address, int port, int timeout) {

// Set the timeout duration for the socket

}

private boolean WaitForAck() {
try {
while (true) {
// We wait until we receive the right ACK
DatagramPacket dp = new DatagramPacket(new byte[MyAckPacket.MAX_SIZE

— 1,
MyAckPacket .MAX_SIZE) ;

//@TODO

// If this is the right ACK, we return "Success"

//@T0DO

// If an ACK wakes us up, check the time again

//@TODO

X

} catch (... e) {
// 1If we timed out waiting for an ACK we return "Failure"
return false;
} catch (IOException e) {
e.printStackTrace();
return false;

6. Extend your protocol to transfer packets of variable size.

Instead of reading the input file 10 bytes at a time, make the Client read a random
number of bytes (say, between 10 and 30). This will simulate what happens when the
application layer does not always have enough data ready to transmit.

You can use the following code snippet to generate a random number between min and
max:

private static int getRandomNumberInRange(int min, int max) {
if (min >= max) {
throw new IllegalArgumentException('"max must be greater than min'");

}

Random r = new Random();
return r.nextInt((max - min) + 1) + min;

}

7. Test your protocol against an unreliable channel.

In the campus network, delays are very small, and packet loss is almost non-existent.
Since you need both to test your protocol, you will to introduce delays and packet loss
artificially.

For this purpose, we provide you with a Java application (included in the source code)
that creates a lossy channel. This application works like a UDP proxy:

1. The sender sends the data packet to the proxy.
2. The proxy delays the data packet, and retransmits it to the receiver, or drops it.
3. The receiver responds with an ack packet.

4. The proxy delays the ack packet, and retransmits it to the sender, or drops it.
Sender Proxy Receiver
Data delay Data
12345 | | 9875 | | 23456 | | 9876
Ack ordrop Ack

Start the lossy channel by running StartLossyChannel. You can configure the following:

e sender port - should be the same as the port to which the sender sends the data

o receiver host - the machine at which the receiver is executed (e.g., localhost)

e receiver port - should be the same as the port receiver listens on

o packet delay in milliseconds and loss ratio as a float value between 0.0 (no loss)
and 1.0 (100% loss)

Note that you need to press ENTER after you input a new value; the bottom window
displays a brief confirmation message. Remember that if you are running the
proxy and the receiver at the same machine, the receiver port needs to be
different from the sender port.

To confirm that the proxy is running, you can check the debug messages shown on the
bottom window.

8. Review your implementation.

What is the maximum amount of time between when a packet is lost and when it gets
retransmitted?

If you only relied on the setSoTimeout option mentioned above, your protocol might take
longer than the advertised time to retransmit a lost packet.

o Which sequence of actions will prevent your program from retransmitting the packet
in time?
o Think of a way to reduce/eliminate this additional delay!

Stop-and-Wait and Selective Repeat

Please find the implementation of both the Stop-and-Wait protocol in
solution_code.zip. You can import this .zip file into Eclipse or IntelliJ
following the steps shown in step 0 of the Milestones section above.

Lossy Channel

To test the protocol with the provided proxy, remember to change the
sender port in StartClient.java to match with the sender port of the proxy
(i.e. 9875).

Maximum possible timeout duration

Assume that we set timeoutDuration to 10 seconds. Then, according to the
implementation shown, the maximum possible wait between transmitting
a packet and timing out is 20 seconds. This can only occur when:

e We transmit a packet at time 0

o We receive an unrelated (old) ACK at time 10, just before the
timeout

e We receive to other ACK until the socket times out naturally 10
seconds afterwards at time 20

10

	The Stop-and-Wait Protocol
	Milestones
	0. Running the base code
	1. Transfer a single UDP packet from Client to Server.
	2. Read a small file and break it up into 10-byte packets.
	3. Make the Server send an ACK for every packet it receives.
	4. Make the Client wait for the ACK before transmitting the next packet.
	5. Add timeouts and retransmissions.
	6. Extend your protocol to transfer packets of variable size.
	7. Test your protocol against an unreliable channel.
	8. Review your implementation.

	Stop-and-Wait and Selective Repeat
	Lossy Channel
	Maximum possible timeout duration

