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Exercise 9.1. Show that a covector field £ on a smooth manifold M is smooth if and
only if for any smooth vector field X on M the function (£, X) : M — R defined by
(&, X)(p) = &(Xp) is smooth.

Solution. Suppose £ is a smooth covector field and X is a smooth vector field. Let
us show that (£, X) is a smooth function. Take any chart (U, ) of M. Then we
can write &|p = >, &dy’, and X = > Xj%, where &, X7 : U — R are smooth
functions. Then the function

is a smooth function on U since the product and sum of smooth functions is smooth.

Viceversa, now suppose ¢ is a covector field such that (¢, X) is a smooth function
for every smooth vector field X on M. Using bump functions we can show that
this is also true for a vector field X defined on an open set U C M: the function
(€], X) : U — R is smooth in this case as well.

Proof. To see that (|, X) is smooth at a point p € U, we summon a bump function
n supported on U that is = 1 in an open neighborhood W of p. Then we define a
smooth vector field Y € X M by setting Y|y = nX and Y|ppeuppy = 0. This field
Y coincides with X on W, therefore the function (£, X) coincides with the smooth
function (£,Y") on W. This proves that (£, X) is smooth at the point p. O

Let (U, ¢) a smooth chart of M. The component functions of £ with respect to ¢,
are the functions & : U — R such that

{lu = Zfi de'.

This functions can be computed by the formula § = (€, %), thus they are are
smooth. This shows that £ is smooth on U. The same reasoning shows that £ is
smooth everywhere. O

Exercise 9.2 (Properties of the differential). Let f,g € C*°(M,R).

(a) Prove the formulas: d(af + bg) = adf + bdg (where a,b are constants),
d(fg) = fdg+gdf,d (5) = gdfg# (on the set where g # 0)

Solution. Here we use the fundamental properties of tangent vectors, namely
the linearity and the Leibniz rule. For every vector field X € T M we have

d(af +bg)(X) = X(af+bg) =aX(f) +bX(g) =adf(X)+bdg(X)
and
d(fg)(X) = X(fg) = f X(9) + g X(f) = f dg(X) + g df(X)

Recall that if h : M — R is constant then X (h) = 0 for every vector field
X € T M, therefore

1
0=X(g/9) =g X(1/9) + _X(9)
which lead us to X (1/g) = —X(g)/¢?. Hence we obtain

AT9)00) = X (/) = FX(fg) + £ X (1) = XTI X g T2 T s

(X)

0
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(b)

If h: R — R is a smooth function then d(ho f) = (b o f)df.

Solution. This is a consequence of the chain rule. Given p € M, let (U,
a smooth chart centered at p. Then let us write the local representation for

d(ho f):

O(h o f i
atho Pl = Y2 202D
i p
The standard chain rule says that agl;f ) ‘ =h'(f(p)) 88 J{i , hence
p P
of | 4
d(ho f)p = (f(p) D 57 datly = W) Al

1

O
If df =0, then f is constant on each connected component of M.
Solution. Let p € M. Take a chart (U, ¢) defined at p whose domain U C M
is connected, and let f = fo¢~! € C®(U) be the local expression of f. Then
we have
of i 7 i :
dfl,=> ¥ d¢’l, = > 9:f(¢(p)) d¢'[, for all points p € U.
P i
Thus if df = 0, then all the partial derivatives of the function ]7: U - R

vanish on U. Since U is connected, we see by elementary calculus that f is
constant on U, therefore f is constant on U. This proves that if df = 0,

i

then f is locally constant on M. Therefore f is constant on each connected
component of M. O

Exercise 9.3 (Closed and exact 1-forms). Let M be a smooth manifold, w € Q' (M).

(a)

Show that for every p € M there exists f € C°°(M) such that w|, = df|,.

Note that this is only an equality of the covectors at one single point p.

Solution. Fix p € M, and let (U, ¢) be a local chart. Writing w and df in
coordinates yields

i of | i
(/J’p = ;ai dgb |p7 and df|P = ; a¢z pd¢ |P
for some real numbers a;. Then define a smooth function g =}, a;¢'. Clearly
gé)}i = a; and so dg|, = wpy. To obtain a function defined on the whole
P

manifold M, we use a bump function n € C°°(M) that is 1 in a neighborhood
of p and has support in U. Then the function f : M — R defined as g - n
on U and 0 outside suppn is smooth and satisfies df|, = dg|, = w|, since

differentials act locally. O
Write £ = ), & d¢’ in some chart (U, ¢). Show that if ¢ is exact, then
0 0
@fi = wafj on U. (1)

Solution. Suppose  is exact, i.e., £ = df for some smooth function f: M —
R. The local expression f = fo¢~! is a smooth function on U = ¢(U) C R™.
Thus by Schwarz’s theorem on the symmetry of second derivatives we have

2f 2f

Ozi0xi  Oridr

for all indices i, 5. We thus obtain the following identity for f:
g o9 , 0 0
o505 = 0505

on U

f onU.
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Now, the components of £ w.r.t. the chart ¢ are & = f(a%i) = df(a%i) = %f.

Thus the identity that we proved is the same as . O
(c) Use the preceding fact to write down a 1-form which is not exact.
Solution. A simple example is to define the following 1-form on R?:
w=ydr—zdy

where (x,y) are the standard coordinates. Then the component functions are

Wwo =Y, W =—
and so 5 5
WO W1
—=1%4-1=—.
oy 7 ox

O

Remark: A 1-form that satisfies for all charts (U, @) is called closed. We have just proved that
closedness is a necessary condition for eractness. However, it is not always sufficient. The topology
of M comes into play: e.g. on a convex subset of R™ any closed 1-form is exact. But on the punctured

plane R?\ {0} we can construct a closed 1-form that is not exact.

Exercise 9.4 (A closed 1-form that is not exact). Let M = R?\{0}. Let w € Q' (M)
be given by
_ xdy —ydx

2 + y2
Compute the integral of w along the curve

v :[0,27] = M : t — (cost,sint).

Conclude that w is not exact.

Solution. Recall that the line integral of w along the curve gamma is defined as

[o=] T (2 (0) e

Since w. (7 (t)) = cos? t +sin® ¢ = 1 then fww = 2m. The fundamental theorem for
line integrals implies that the integral of an exact 1-form over a closed curve is zero,
hence w is not an exact 1-form.

Remark: Notice that the 1-form w is closed since
Oy \_ Py _0( o
oy \z2+y2) (224922 Oz \ 22+ y2

Exercise 9.5. Let (x,%) be the standard coordinates on R? and let (r,¢) be the
polar coordinates.

g

(a) Express dz and dy in terms of dr and dp (wherever the latter are defined).

Solution. Let (z,y) = (r cos ¢, rsin ¢) be the standard polar coordinate trans-

formation. We have dx = d(rcos¢) = cos¢ dr — rsing d¢ and dy =

d(rsin¢g) =sing dr 4+ rcos¢ do. d
(b) Let G : R? = R, G(x,y) = 2®> + y>. Let t be the standard coordinate on R.

Compute G*(dt).

Solution. G*(dt) = dG = 2z dx + 2y dy O

Exercise 9.6 (Line integrals). .

(a) Let M be a smooth manifold, v : I = [a,b] — M a smooth curve and let £ €
QY(M). Denote by t the standard coordinate on R. Show that f7§ = [;7*¢.
3
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Solution. We have that v*6 is a one-form on [a,b] and since Q'(R) has the
global frame dt there exists f € C*°([a,b]) such that v*§ = f dt. In fact, the
function f is given by

£(8) = 7°0() = Bl (7 ().

L 0= | 0,0/ (1)) di = / " f0) ar
[l

(b) (Change of variables for 1-forms) Show that if o : I — J is a positive (i.e.
order preserving) diffeo between two intervals I = [a,b], J = |[c,d], then
[;0%0 = [, 6 for any 1-form 6 € Q' (J).

Hint: Compute the derivatives of the functions F(s) = [” 00 and G(t) = f: 6.
What happens if o is a negative (i.e. order reversing) diffeo ?

Hence

Solution. We write 6 = gdy, ¢*0 = fdx. We can compute f in terms of g as
follows:

=0 (2) =0(2)

0 (7)) =098 (1) =o' a(as),

Now we consider the functions F(s) = [*0*0 and G(t) = ['6. By the
fundamental theorem of integral calculus we have F'(s) = f(s) and G'(t) =
g(1).

We claim that F'(s) = G(o(s)) for all s = [a,b]. Indeed, both functions F
and G o o have value 0 at s = a, and their derivatives coincide: (Goo)'(s) =
G'(o(s)) - o'(s) = £(5) = F(s).

We conclude that F(b) = f; %6 equals G(o (b)) = G(d) = fcd 6.

Now consider the case that ¢ : I — J is an order-reversing diffeomorphism.
To keep having o(a) = ¢ and o(b) = d we write I = [a,b] and J = [d,c|. In
this case the same argument as above proves that the integral [ ;070 = ff f
is equal to the integral fcdg =—[79=—[;0. Therefore [,0*0 =— [,0. O

(c) (Reparametrization invariance of curve integrals) If two C! curves v : J — M,
B : I — M are equivalent as oriented curves, in the sense that 3 is a positive
reparametrization of v (i.e. 8 = oo, where o : I — J is a positive diffeo),
then f7§ = fﬁg for any 1-form ¢ € Q'(M). Prove this using the definition
via pullback.

/ﬂfz/jﬂ*&z/j(voa)*&

Solution.



