Exercise 9.1. Show that a covector field ξ on a smooth manifold M is smooth if and only if for any smooth vector field X on M the function $\langle\xi, X\rangle: M \rightarrow \mathbb{R}$ defined by $\langle\xi, X\rangle(p)=\xi_{p}\left(X_{p}\right)$ is smooth.

Solution. Suppose ξ is a smooth covector field and X is a smooth vector field. Let us show that $\langle\xi, X\rangle$ is a smooth function. Take any chart (U, φ) of M. Then we can write $\left.\xi\right|_{U}=\sum_{i} \xi_{i} \mathrm{~d} \varphi^{i}$, and $X=\sum_{j} X^{j} \frac{\partial}{\partial \varphi^{j}}$, where $\xi_{i}, X^{j}: U \rightarrow \mathbb{R}$ are smooth functions. Then the function

$$
\langle\xi, X\rangle=\sum_{i} \xi_{i} X^{i}
$$

is a smooth function on U since the product and sum of smooth functions is smooth.
Viceversa, now suppose ξ is a covector field such that $\langle\xi, X\rangle$ is a smooth function for every smooth vector field X on M. Using bump functions we can show that this is also true for a vector field X defined on an open set $U \subseteq M$: the function $\left\langle\left.\xi\right|_{U}, X\right\rangle: U \rightarrow \mathbb{R}$ is smooth in this case as well.

Proof. To see that $\left\langle\left.\xi\right|_{U}, X\right\rangle$ is smooth at a point $p \in U$, we summon a bump function η supported on U that is $\equiv 1 \mathrm{in}$ an open neighborhood W of p. Then we define a smooth vector field $Y \in \mathfrak{X} M$ by setting $\left.Y\right|_{U} \equiv \eta X$ and $\left.Y\right|_{M \backslash \operatorname{supp} \eta} \equiv 0$. This field Y coincides with X on W, therefore the function $\langle\xi, X\rangle$ coincides with the smooth function $\langle\xi, Y\rangle$ on W. This proves that $\langle\xi, X\rangle$ is smooth at the point p.

Let (U, φ) a smooth chart of M. The component functions of ξ with respect to φ, are the functions $\xi_{i}: U \rightarrow \mathbb{R}$ such that

$$
\left.\xi\right|_{U}=\sum_{i} \xi_{i} \mathrm{~d} \varphi^{i} .
$$

This functions can be computed by the formula $\xi_{i}=\left\langle\xi, \frac{\partial}{\partial \varphi^{i}}\right\rangle$, thus they are are smooth. This shows that ξ is smooth on U. The same reasoning shows that ξ is smooth everywhere.

Exercise 9.2 (Properties of the differential). Let $f, g \in C^{\infty}(M, \mathbb{R})$.
(a) Prove the formulas: $\mathrm{d}(a f+b g)=a \mathrm{~d} f+b \mathrm{~d} g$ (where a, b are constants), $\mathrm{d}(f g)=f \mathrm{~d} g+g \mathrm{~d} f, \mathrm{~d}\left(\frac{f}{g}\right)=\frac{g \mathrm{~d} f-f \mathrm{~d} g}{g^{2}}$ (on the set where $g \neq 0$)
Solution. Here we use the fundamental properties of tangent vectors, namely the linearity and the Leibniz rule. For every vector field $X \in T M$ we have
$\mathrm{d}(a f+b g)(X)=X(a f+b g)=a X(f)+b X(g)=a \mathrm{~d} f(X)+b \mathrm{~d} g(X)$
and

$$
\mathrm{d}(f g)(X)=X(f g)=f X(g)+g X(f)=f \mathrm{~d} g(X)+g \mathrm{~d} f(X)
$$

Recall that if $h: M \rightarrow \mathbb{R}$ is constant then $X(h)=0$ for every vector field $X \in T M$, therefore

$$
0=X(g / g)=g X(1 / g)+\frac{1}{g} X(g)
$$

which lead us to $X(1 / g)=-X(g) / g^{2}$. Hence we obtain

$$
\mathrm{d}(f / g)(X)=X(f / g)=f X(1 / g)+\frac{1}{g} X(f)=\frac{g X(f)-f X(g)}{g^{2}}=\frac{g \mathrm{~d} f-f \mathrm{~d} g}{g^{2}}(X)
$$

(b) If $h: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function then $\mathrm{d}(h \circ f)=\left(h^{\prime} \circ f\right) \mathrm{d} f$.

Solution. This is a consequence of the chain rule. Given $p \in M$, let $\left(U, x^{i}\right)$ a smooth chart centered at p. Then let us write the local representation for $\mathrm{d}(h \circ f)$:

$$
\left.\mathrm{d}(h \circ f)\right|_{p}=\left.\left.\sum_{i} \frac{\partial(h \circ f)}{\partial x^{i}}\right|_{p} \mathrm{~d} x^{i}\right|_{p}
$$

The standard chain rule says that $\left.\frac{\partial(h \circ f)}{\partial x^{i}}\right|_{p}=\left.h^{\prime}(f(p)) \frac{\partial f}{\partial x^{i}}\right|_{p}$, hence

$$
\mathrm{d}(h \circ f)_{p}=\left.\left.h^{\prime}(f(p)) \sum_{i} \frac{\partial f}{\partial x^{i}}\right|_{p} \mathrm{~d} x^{i}\right|_{p}=\left.h^{\prime}(f(p)) \mathrm{d} f\right|_{p} .
$$

(c) If $\mathrm{d} f \equiv 0$, then f is constant on each connected component of M.

Solution. Let $p \in M$. Take a chart (U, ϕ) defined at p whose domain $U \subseteq M$ is connected, and let $\widetilde{f}=f \circ \phi^{-1} \in \mathcal{C}^{\infty}(\widetilde{U})$ be the local expression of f. Then we have

$$
\left.\mathrm{d} f\right|_{p}=\left.\left.\sum_{i} \frac{\partial f}{\partial \phi^{i}}\right|_{p} \mathrm{~d} \phi^{i}\right|_{p}=\left.\sum_{i} \partial_{i} \tilde{f}(\phi(p)) \mathrm{d} \phi^{i}\right|_{p} \quad \text { for all points } p \in U .
$$

Thus if $\mathrm{d} f \equiv 0$, then all the partial derivatives of the function $\widetilde{f}: \widetilde{U} \rightarrow \mathbb{R}$ vanish on \widetilde{U}. Since \widetilde{U} is connected, we see by elementary calculus that \widetilde{f} is constant on \widetilde{U}, therefore f is constant on U. This proves that if $\mathrm{d} f \equiv 0$, then f is locally constant on M. Therefore f is constant on each connected component of M.

Exercise 9.3 (Closed and exact 1-forms). Let M be a smooth manifold, $\omega \in \Omega^{1}(M)$.
(a) Show that for every $p \in M$ there exists $f \in C^{\infty}(M)$ such that $\left.\omega\right|_{p}=\left.\mathrm{d} f\right|_{p}$. Note that this is only an equality of the covectors at one single point p.
Solution. Fix $p \in M$, and let (U, ϕ) be a local chart. Writing ω and $\mathrm{d} f$ in coordinates yields

$$
\left.\omega\right|_{p}=\left.\sum_{i} a_{i} \mathrm{~d} \phi^{i}\right|_{p}, \quad \text { and }\left.\quad \mathrm{d} f\right|_{p}=\left.\left.\sum_{i} \frac{\partial f}{\partial \phi^{i}}\right|_{p} \mathrm{~d} \phi^{i}\right|_{p}
$$

for some real numbers a_{i}. Then define a smooth function $g=\sum_{i} a_{i} \phi^{i}$. Clearly $\left.\frac{\partial g}{\partial \phi^{2}}\right|_{p}=a_{i}$ and so $\left.\mathrm{d} g\right|_{p}=\omega_{p}$. To obtain a function defined on the whole manifold M, we use a bump function $\eta \in C^{\infty}(M)$ that is 1 in a neighborhood of p and has support in U. Then the function $f: M \rightarrow \mathbb{R}$ defined as $g \cdot \eta$ on U and 0 outside $\operatorname{supp} \eta$ is smooth and satisfies $\left.\mathrm{d} f\right|_{p}=\left.\mathrm{d} g\right|_{p}=\left.\omega\right|_{p}$ since differentials act locally.
(b) Write $\xi=\sum_{i} \xi_{i} \mathrm{~d} \phi^{i}$ in some chart (U, ϕ). Show that if ξ is exact, then

$$
\begin{equation*}
\frac{\partial}{\partial \phi^{j}} \xi_{i}=\frac{\partial}{\partial \phi^{i}} \xi_{j} \quad \text { on } U . \tag{1}
\end{equation*}
$$

Solution. Suppose ξ is exact, i.e., $\xi=\mathrm{d} f$ for some smooth function $f: M \rightarrow$ \mathbb{R}. The local expression $\widetilde{f}=f \circ \phi^{-1}$ is a smooth function on $\widetilde{U}=\phi(U) \subseteq \mathbb{R}^{n}$. Thus by Schwarz's theorem on the symmetry of second derivatives we have

$$
\frac{\partial^{2} \widetilde{f}}{\partial x^{i} \partial x^{j}}=\frac{\partial^{2} \widetilde{f}}{\partial x^{j} \partial x^{i}} \quad \text { on } \widetilde{U}
$$

for all indices i, j. We thus obtain the following identity for f :

$$
\frac{\partial}{\partial \phi^{i}} \frac{\partial}{\partial \phi^{j}} f=\frac{\partial}{\partial \phi^{j}} \frac{\partial}{2 \phi^{i}} f \quad \text { on } U .
$$

Now, the components of ξ w.r.t. the chart ϕ are $\xi_{i}=\xi\left(\frac{\partial}{\partial \phi^{i}}\right)=\mathrm{d} f\left(\frac{\partial}{\partial \phi^{2}}\right)=\frac{\partial}{\partial \phi^{i}} f$.
Thus the identity that we proved is the same as (1).
(c) Use the preceding fact to write down a 1 -form which is not exact.

Solution. A simple example is to define the following 1-form on \mathbb{R}^{2} :

$$
\omega=y \mathrm{~d} x-x \mathrm{~d} y
$$

where (x, y) are the standard coordinates. Then the component functions are

$$
\omega_{0}=y, \quad \omega_{1}=-x
$$

and so

$$
\frac{\partial \omega_{0}}{\partial y}=1 \neq-1=\frac{\partial \omega_{1}}{\partial x} .
$$

Remark: A 1-form that satisfies (11) for all charts (U, ϕ) is called closed. We have just proved that closedness is a necessary condition for exactness. However, it is not always sufficient. The topology of M comes into play: e.g. on a convex subset of \mathbb{R}^{n} any closed 1 -form is exact. But on the punctured plane $\mathbb{R}^{2} \backslash\{0\}$ we can construct a closed 1-form that is not exact.

Exercise 9.4 (A closed 1-form that is not exact). Let $M=\mathbb{R}^{2} \backslash\{0\}$. Let $\omega \in \Omega^{1}(M)$ be given by

$$
\omega=\frac{x \mathrm{~d} y-y \mathrm{~d} x}{x^{2}+y^{2}} .
$$

Compute the integral of ω along the curve

$$
\gamma:[0,2 \pi] \rightarrow M: t \mapsto(\cos t, \sin t) .
$$

Conclude that ω is not exact.
Solution. Recall that the line integral of ω along the curve gamma is defined as

$$
\int_{\gamma} \omega=\int_{0}^{2 \pi} \omega_{\gamma(t)}\left(\gamma^{\prime}(t)\right) \mathrm{d} t
$$

Since $\omega_{\gamma(t)}\left(\gamma^{\prime}(t)\right)=\cos ^{2} t+\sin ^{2} t=1$ then $\int_{\gamma} \omega=2 \pi$. The fundamental theorem for line integrals implies that the integral of an exact 1 -form over a closed curve is zero, hence ω is not an exact 1-form.

Remark: Notice that the 1 -form ω is closed since

$$
\frac{\partial}{\partial y}\left(\frac{-y}{x^{2}+y^{2}}\right)=-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right)
$$

Exercise 9.5. Let (x, y) be the standard coordinates on \mathbb{R}^{2} and let (r, φ) be the polar coordinates.
(a) Express $\mathrm{d} x$ and $\mathrm{d} y$ in terms of $\mathrm{d} r$ and $\mathrm{d} \varphi$ (wherever the latter are defined).

Solution. Let $(x, y)=(r \cos \phi, r \sin \phi)$ be the standard polar coordinate transformation. We have $\mathrm{d} x=\mathrm{d}(r \cos \phi)=\cos \phi \mathrm{d} r-r \sin \phi \mathrm{~d} \phi$ and $\mathrm{d} y=$ $\mathrm{d}(r \sin \phi)=\sin \phi \mathrm{d} r+r \cos \phi \mathrm{~d} \phi$.
(b) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}, G(x, y)=x^{2}+y^{2}$. Let t be the standard coordinate on \mathbb{R}. Compute $G^{*}(\mathrm{~d} t)$.
Solution. $G^{*}(\mathrm{~d} t)=\mathrm{d} G=2 x \mathrm{~d} x+2 y \mathrm{~d} y$
Exercise 9.6 (Line integrals). .
(a) Let M be a smooth manifold, $\gamma: I=[a, b] \rightarrow M$ a smooth curve and let $\xi \in$ $\Omega^{1}(M)$. Denote by t the standard coordinate on \mathbb{R}. Show that $\int_{\gamma} \xi=\int_{I} \gamma^{*} \xi$.

Solution. We have that $\gamma^{*} \theta$ is a one-form on $[a, b]$ and since $\Omega^{1}(\mathbb{R})$ has the global frame $\mathrm{d} t$ there exists $f \in C^{\infty}([a, b])$ such that $\gamma^{*} \theta=f \mathrm{~d} t$. In fact, the function f is given by

$$
f(t)=\gamma^{*} \theta\left(\frac{\partial}{\partial t}\right)=\left.\theta\right|_{\gamma(t)}\left(\gamma^{\prime}(t)\right)
$$

Hence

$$
\int_{\gamma} \theta=\int_{a}^{b} \theta_{\gamma(t)}\left(\gamma^{\prime}(t)\right) \mathrm{d} t=\int_{a}^{b} f(t) \mathrm{d} t
$$

(b) (Change of variables for 1-forms) Show that if $\sigma: I \rightarrow J$ is a positive (i.e. order preserving) diffeo between two intervals $I=[a, b], J=[c, d]$, then $\int_{I} \sigma^{*} \theta=\int_{J} \theta$ for any 1-form $\theta \in \Omega^{1}(J)$.
Hint: Compute the derivatives of the functions $F(s)=\int_{a}^{s} \sigma^{*} \theta$ and $G(t)=\int_{c}^{t} \theta$.
What happens if σ is a negative (i.e. order reversing) diffeo ?
Solution. We write $\theta=g \mathrm{~d} y, \sigma^{*} \theta=f \mathrm{~d} x$. We can compute f in terms of g as follows:

$$
\begin{aligned}
f(s)=\sigma^{*} \theta\left(\frac{\partial}{\partial s}\right) & =\theta\left(\sigma_{*} \frac{\partial}{\partial s}\right) \\
& =\theta\left(\sigma^{\prime}(s) \cdot \frac{\partial}{\partial s}\right)=\sigma^{\prime}(s) \cdot \theta\left(\frac{\partial}{\partial s}\right)=\sigma^{\prime}(s) \cdot g(\sigma(s)) .
\end{aligned}
$$

Now we consider the functions $F(s)=\int_{a}^{s} \sigma^{*} \theta$ and $G(t)=\int_{c}^{t} \theta$. By the fundamental theorem of integral calculus we have $F^{\prime}(s)=f(s)$ and $G^{\prime}(t)=$ $g(t)$.

We claim that $F(s)=G(\sigma(s))$ for all $s=[a, b]$. Indeed, both functions F and $G \circ \sigma$ have value 0 at $s=a$, and their derivatives coincide: $(G \circ \sigma)^{\prime}(s)=$ $G^{\prime}(\sigma(s)) \cdot \sigma^{\prime}(s)=f(s)=F^{\prime}(s)$.

We conclude that $F(b)=\int_{a}^{b} \sigma^{*} \theta$ equals $G(\sigma(b))=G(d)=\int_{c}^{d} \theta$.
Now consider the case that $\sigma: I \rightarrow J$ is an order-reversing diffeomorphism. To keep having $\sigma(a)=c$ and $\sigma(b)=d$ we write $I=[a, b]$ and $J=[d, c]$. In this case the same argument as above proves that the integral $\int_{I} \sigma^{*} \theta:=\int_{a}^{b} f$ is equal to the integral $\int_{c}^{d} g=-\int_{d}^{c} g=-\int_{J} \theta$. Therefore $\int_{I} \sigma^{*} \theta=-\int_{J} \theta$.
(c) (Reparametrization invariance of curve integrals) If two \mathcal{C}^{1} curves $\gamma: J \rightarrow M$, $\beta: I \rightarrow M$ are equivalent as oriented curves, in the sense that β is a positive reparametrization of γ (i.e. $\beta=\gamma \circ \sigma$, where $\sigma: I \rightarrow J$ is a positive diffeo), then $\int_{\gamma} \xi=\int_{\beta} \xi$ for any 1-form $\xi \in \Omega^{1}(M)$. Prove this using the definition via pullback.

Solution.

$$
\begin{aligned}
\int_{\beta} \xi=\int_{I} \beta^{*} \xi & =\int_{I}(\gamma \circ \sigma)^{*} \xi \\
& =\int_{I} \sigma^{*}\left(\gamma^{*} \xi\right)=\int_{J} \gamma^{*} \xi=\int_{\gamma} \xi
\end{aligned}
$$

