Mini-project: Solving the N-queens problems via the Metropolis algorithm

1 Finding a solution

In this first part, you should use the Metropolis algorithm in order to solve the N-queens problem. Here are questions you should think about:

- what state space S to choose?
- what base chain?
- what energy function $f: S \to \mathbb{R}$ should be optimized?
- how to compute/update efficiently this energy function?
- what are the resulting acceptance probabilities (and Metropolis chain)?
- what inverse temperature β should be chosen?
- is it worth using simulated annealing here?

Your tasks for this first part of the project:

- Code the Metropolis algorithm, deciding on the best choices to make (which you should explain in your report).
- Show us some graphs demonstrating that your code works for N around 100, 1000.

2 Estimating the number of solutions

For a given value of N, let us denote this number as Z_{∞} , as it corresponds to the normalization constant (or partition function) for the case $\beta = \infty$ (cf. course): this number Z_{∞} is typically hard to compute. Currently, its precise value is known up to N = 26 only. We propose below some steps to evaluate this number for large values of N.

Let Z_0 be the partition function corresponding to the case $\beta = 0$ (this number is easily computable, whatever the choice you made in part 1). Theoretically, the following approach is possible in order to estimate Z_{∞} :

- draw a configuration at random according to π_0 and check whether it is a valid configuration (i.e., with no queens attacking each other);
- repeat this a zillion times and count the number of valid configurations: this number divided by the total number of draws is an estimator of the ratio Z_{∞}/Z_0 .

Problem: this number Z_{∞}/Z_0 is extremely small, so the variance of your estimator will be huge, unless you draw a really huge number of samples.

A better approach is therefore to do the following: fix a target β^* that you think is "close enough"

to ∞ , so that $Z_{\beta^*} \simeq Z_{\infty}$; the first part should give you a clue about which value β^* to choose.

Then observe that for $0 = \beta_0 < \beta_1 < \beta_2 < \ldots < \beta_T = \beta^*$, we have the following equality

$$Z_{\beta^*}/Z_0 = \prod_{t=0}^{T-1} Z_{\beta_{t+1}}/Z_{\beta_t}$$

which can be rewritten as

$$\log(Z_{\beta^*}/Z_0) = \sum_{t=0}^{T-1} \log(Z_{\beta_{t+1}}/Z_{\beta_t})$$

The advantage of this approach with respect to the first one is that if β_t and β_{t+1} are close enough, then the ratio $Z_{\beta_{t+1}}/Z_{\beta_t}$ is not so small and can be rewritten as follows:

$$\frac{Z_{\beta_{t+1}}}{Z_{\beta_t}} = \frac{\sum_{x \in S} \exp(-\beta_{t+1} f(x))}{\sum_{y \in S} \exp(-\beta_t f(y))} = \frac{\sum_{x \in S} \exp(-\beta_{t+1} f(x) + \beta_t f(x) - \beta_t f(x))}{\sum_{y \in S} \exp(-\beta_t f(y))}$$

$$= \sum_{x \in S} \exp(-(\beta_{t+1} - \beta_t) f(x)) \pi_{\beta_t}(x) \quad \text{where} \quad \pi_{\beta_t}(x) = \frac{\exp(-\beta_t f(x))}{\sum_{y \in S} \exp(-\beta_t f(y))}$$

In order to estimate this ratio, draw M i.i.d. samples X_1, \ldots, X_M according to π_{β_t} (using the Metropolis algorithm) and compute

$$\frac{1}{M} \sum_{k=1}^{M} \exp(-(\beta_{t+1} - \beta_t) f(X_k))$$

Repeating then this procedure for all values of $t \in \{0, 1, \dots, T-1\}$ (and multiplying the results) allows to estimate the ratio Z_{β^*}/Z_0 , meant to be close to Z_{∞}/Z_0 ; this allows finally to estimate Z_{∞} .

Your tasks for this second part of the project:

- Choose values of $0 < \beta_1 < \beta_2 < \ldots < \beta_T = \beta^*$, as well as T, which you think will lead to a good estimator of Z_{∞} .
- Draw a graph of $\log(Z_{\beta_t})$ as a function of β_t , using your successive estimators.
- What can you say about the variance of your estimator of Z_{∞} ?

Deadline for your report: Monday, December 19, 11:59 PM.

3 Competition

During the competition, to take place on Thursday, December 22, 12:15 PM, we will ask you to change your algorithm, so as to solve a slightly different problem. We will still specify in which format exactly we expect you to send us your solution(s).

Your tasks for this third part of the project: Be ready for it!