
Markov Chains and Algorithmic Applications EPFL - Fall Semester 2022-2023

Mini-project: Solving the N-queens problems via the Metropolis algorithm

1 Finding a solution

In this first part, you should use the Metropolis algorithm in order to solve the N -queens problem.

Here are questions you should think about:

- what state space S to choose?

- what base chain?

- what energy function f : S → R should be optimized?

- how to compute/update efficiently this energy function?

- what are the resulting acceptance probabilities (and Metropolis chain)?

- what inverse temperature β should be chosen?

- is it worth using simulated annealing here?

Your tasks for this first part of the project:

- Code the Metropolis algorithm, deciding on the best choices to make (which you should explain
in your report).

- Show us some graphs demonstrating that your code works for N around 100, 1000.

2 Estimating the number of solutions

For a given value of N , let us denote this number as Z∞, as it corresponds to the normalization
constant (or partition function) for the case β =∞ (cf. course): this number Z∞ is typically hard
to compute. Currently, its precise value is known up to N = 26 only. We propose below some steps
to evaluate this number for large values of N .

Let Z0 be the partition function corresponding to the case β = 0 (this number is easily computable,
whatever the choice you made in part 1). Theoretically, the following approach is possible in order
to estimate Z∞:

- draw a configuration at random according to π0 and check whether it is a valid configuration (i.e.,
with no queens attacking each other);

- repeat this a zillion times and count the number of valid configurations: this number divided by
the total number of draws is an estimator of the ratio Z∞/Z0.

Problem: this number Z∞/Z0 is extremely small, so the variance of your estimator will be huge,
unless you draw a really huge number of samples.

A better approach is therefore to do the following: fix a target β∗ that you think is “close enough”



to ∞, so that Zβ∗ ' Z∞; the first part should give you a clue about which value β∗ to choose.

Then observe that for 0 = β0 < β1 < β2 < . . . < βT = β∗, we have the following equality

Zβ∗/Z0 =

T−1∏
t=0

Zβt+1/Zβt

which can be rewritten as

log(Zβ∗/Z0) =
T−1∑
t=0

log(Zβt+1/Zβt)

The advantage of this approach with respect to the first one is that if βt and βt+1 are close enough,
then the ratio Zβt+1/Zβt is not so small and can be rewritten as follows:

Zβt+1

Zβt
=

∑
x∈S exp(−βt+1 f(x))∑
y∈S exp(−βt f(y))

=

∑
x∈S exp(−βt+1 f(x) + βt f(x)− βt f(x))∑

y∈S exp(−βt f(y))

=
∑
x∈S

exp(−(βt+1 − βt) f(x))πβt(x) where πβt(x) =
exp(−βt f(x))∑
y∈S exp(−βt f(y))

In order to estimate this ratio, draw M i.i.d. samples X1, . . . , XM according to πβt (using the
Metropolis algorithm) and compute

1

M

M∑
k=1

exp(−(βt+1 − βt) f(Xk))

Repeating then this procedure for all values of t ∈ {0, 1, . . . , T − 1} (and multiplying the results)
allows to estimate the ratio Zβ∗/Z0, meant to be close to Z∞/Z0; this allows finally to estimate Z∞.

Your tasks for this second part of the project:

- Choose values of 0 < β1 < β2 < . . . < βT = β∗, as well as T , which you think will lead to a good
estimator of Z∞.

- Draw a graph of log(Zβt) as a function of βt, using your successive estimators.

- What can you say about the variance of your estimator of Z∞?

Deadline for your report: Monday, December 19, 11:59 PM.

3 Competition

During the competition, to take place on Thursday, December 22, 12:15 PM, we will ask you to
change your algorithm, so as to solve a slightly different problem. We will still specify in which
format exactly we expect you to send us your solution(s).

Your tasks for this third part of the project: Be ready for it!

2


	Finding a solution
	Estimating the number of solutions
	Competition

