Mini-project: Solving the N -queens problems via the Metropolis algorithm

1 Finding a solution

In this first part, you should use the Metropolis algorithm in order to solve the N-queens problem.
Here are questions you should think about:

- what state space S to choose?
- what base chain?
- what energy function $f: S \rightarrow \mathbb{R}$ should be optimized?
- how to compute/update efficiently this energy function?
- what are the resulting acceptance probabilities (and Metropolis chain)?
- what inverse temperature β should be chosen?
- is it worth using simulated annealing here?

Your tasks for this first part of the project:

- Code the Metropolis algorithm, deciding on the best choices to make (which you should explain in your report).
- Show us some graphs demonstrating that your code works for N around 100, 1000.

2 Estimating the number of solutions

For a given value of N, let us denote this number as Z_{∞}, as it corresponds to the normalization constant (or partition function) for the case $\beta=\infty$ (cf. course): this number Z_{∞} is typically hard to compute. Currently, its precise value is known up to $N=26$ only. We propose below some steps to evaluate this number for large values of N.

Let Z_{0} be the partition function corresponding to the case $\beta=0$ (this number is easily computable, whatever the choice you made in part 1). Theoretically, the following approach is possible in order to estimate Z_{∞} :

- draw a configuration at random according to π_{0} and check whether it is a valid configuration (i.e., with no queens attacking each other);
- repeat this a zillion times and count the number of valid configurations: this number divided by the total number of draws is an estimator of the ratio Z_{∞} / Z_{0}.

Problem: this number Z_{∞} / Z_{0} is extremely small, so the variance of your estimator will be huge, unless you draw a really huge number of samples.
A better approach is therefore to do the following: fix a target β^{*} that you think is "close enough"
to ∞, so that $Z_{\beta^{*}} \simeq Z_{\infty}$; the first part should give you a clue about which value β^{*} to choose.
Then observe that for $0=\beta_{0}<\beta_{1}<\beta_{2}<\ldots<\beta_{T}=\beta^{*}$, we have the following equality

$$
Z_{\beta^{*}} / Z_{0}=\prod_{t=0}^{T-1} Z_{\beta_{t+1}} / Z_{\beta_{t}}
$$

which can be rewritten as

$$
\log \left(Z_{\beta^{*}} / Z_{0}\right)=\sum_{t=0}^{T-1} \log \left(Z_{\beta_{t+1}} / Z_{\beta_{t}}\right)
$$

The advantage of this approach with respect to the first one is that if β_{t} and β_{t+1} are close enough, then the ratio $Z_{\beta_{t+1}} / Z_{\beta_{t}}$ is not so small and can be rewritten as follows:

$$
\begin{aligned}
\frac{Z_{\beta_{t+1}}}{Z_{\beta_{t}}} & =\frac{\sum_{x \in S} \exp \left(-\beta_{t+1} f(x)\right)}{\sum_{y \in S} \exp \left(-\beta_{t} f(y)\right)}=\frac{\sum_{x \in S} \exp \left(-\beta_{t+1} f(x)+\beta_{t} f(x)-\beta_{t} f(x)\right)}{\sum_{y \in S} \exp \left(-\beta_{t} f(y)\right)} \\
& =\sum_{x \in S} \exp \left(-\left(\beta_{t+1}-\beta_{t}\right) f(x)\right) \pi_{\beta_{t}}(x) \quad \text { where } \quad \pi_{\beta_{t}}(x)=\frac{\exp \left(-\beta_{t} f(x)\right)}{\sum_{y \in S} \exp \left(-\beta_{t} f(y)\right)}
\end{aligned}
$$

In order to estimate this ratio, draw M i.i.d. samples X_{1}, \ldots, X_{M} according to $\pi_{\beta_{t}}$ (using the Metropolis algorithm) and compute

$$
\frac{1}{M} \sum_{k=1}^{M} \exp \left(-\left(\beta_{t+1}-\beta_{t}\right) f\left(X_{k}\right)\right)
$$

Repeating then this procedure for all values of $t \in\{0,1, \ldots, T-1\}$ (and multiplying the results) allows to estimate the ratio $Z_{\beta^{*}} / Z_{0}$, meant to be close to Z_{∞} / Z_{0}; this allows finally to estimate Z_{∞}.

Your tasks for this second part of the project:

- Choose values of $0<\beta_{1}<\beta_{2}<\ldots<\beta_{T}=\beta^{*}$, as well as T, which you think will lead to a good estimator of Z_{∞}.
- Draw a graph of $\log \left(Z_{\beta_{t}}\right)$ as a function of β_{t}, using your successive estimators.
- What can you say about the variance of your estimator of Z_{∞} ?

Deadline for your report: Monday, December 19, 11:59 PM.

3 Competition

During the competition, to take place on Thursday, December 22 , $12: 15$ PM, we will ask you to change your algorithm, so as to solve a slightly different problem. We will still specify in which format exactly we expect you to send us your solution(s).

Your tasks for this third part of the project: Be ready for it!

