Astrophysics III: Stellar and galactic dynamics Solutions

Problem 1:

The Jeans equations are obtained from the Boltzmann equations, by computing moments of various orders.
A- Direct integration on velocities (moment of order 0)
B- Integration on the velocities after multiplying by one component of the velocity (moment of order 1)
Here are a few properties to keep in mind :

1) $f \rightarrow 0$ when $\left|v_{i}\right| \rightarrow \infty$
2) $m \int f d^{3} \mathbf{v}=\rho$
3) $m \int v_{i} f d^{3} \mathbf{v}=\rho \overline{v_{i}}$
4) $\int v_{i} v_{j} f d^{3} \mathbf{v}=\rho \overline{v_{i} v_{j}}$
5) $\overline{v_{i}} \overline{v_{j}}+\sigma_{i j}^{2}=\overline{v_{i} v_{j}}$
where we set $m=1$.

A - moment 0 :

$$
\frac{\partial \nu}{\partial t}+\sum_{i} \frac{\partial}{\partial x_{i}}\left(\nu \overline{v_{i}}\right)=0
$$

in vectorial notation:

$$
\frac{\partial \nu}{\partial t}+\nabla \cdot(\nu \overline{\mathbf{v}})=0
$$

In spherical coordinates, the divergence of a vector reads :

$$
\nabla \cdot \mathbf{F}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} F_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta F_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}
$$

consequently, the equation becomes :

$$
\frac{\partial \nu}{\partial t}+\frac{\partial}{\partial r}\left(\nu \overline{v_{r}}\right)+\frac{2}{r} \nu \overline{v_{r}}+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\nu \overline{v_{\theta}}\right)+\frac{\cot \theta}{r} \nu \overline{v_{\theta}}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\left(\nu \overline{v_{\phi}}\right)=0
$$

The systems with a spherical symmetry have negligible meridional motions, hence $\overline{v_{\theta}}=0$. Furthermore, a possible rotation of the system is done at an azimuthal symmetry, i.e. $\partial \overline{v_{\phi}} / \partial \phi=0$. (In short, there can be no angular dependencies in a spherically symmetric system, hence $\partial / \partial \theta=0, \partial / \partial \phi=0$)

Thus, we get for the moment 0

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \rho \overline{v_{r}}\right)=\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial r}\left(\rho \overline{v_{r}}\right)+\frac{2}{r} \rho \overline{v_{r}}=0
$$

B - First moment In vectorial notation

$$
\frac{\partial \overline{\mathbf{v}}}{\partial t}+(\overline{\mathbf{v}} \cdot \nabla) \overline{\mathbf{v}}=-\nabla \Phi-\frac{1}{\rho} \nabla \cdot\left(\rho \boldsymbol{\sigma}^{\mathbf{2}}\right)
$$

Transformation to spherical coordinates is risky (because of the divergence of tensor), so it is better to start directly from the collisionless Boltzmann equation expressed in spherical coordinates.

$$
\begin{gathered}
\frac{\partial f}{\partial t}+v_{r} \frac{\partial f}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial f}{\partial \theta}+\frac{v_{\phi}}{r \sin \theta} \frac{\partial f}{\partial \phi}+\left(\frac{v_{\theta}^{2}+v_{\phi}^{2}}{r}-\frac{\partial \Phi}{\partial r}\right) \frac{\partial f}{\partial v_{r}} \\
+\frac{1}{r}\left(v_{\phi}^{2} \cot \theta-v_{r} v_{\theta}\right) \frac{\partial f}{\partial v_{\theta}}-\frac{1}{r}\left[v_{\phi}\left(v_{r}+v_{\theta} \cot \theta\right)\right] \frac{\partial f}{\partial v_{\phi}}=0
\end{gathered}
$$

We compute the radial Jeans equation by multiplying the collisionless Boltzmann equation by v_{r} and integrating on velocities

$$
\begin{aligned}
\int v_{r}^{2} \frac{\partial f}{\partial r} d^{3} \mathbf{v}=\frac{\partial}{\partial r} \int f v_{r}^{2} d^{3} \mathbf{v} & =\frac{\partial}{\partial r}\left(\rho \overline{v_{r}^{2}}\right) \\
\int \frac{v_{r} v_{\theta}}{r} \frac{\partial f}{\partial \theta} d^{3} \mathbf{v}=\frac{1}{r} \frac{\partial}{\partial \theta} \int f v_{r} v_{\theta} d^{3} \mathbf{v} & =\frac{1}{r} \frac{\partial}{\partial \theta}\left(\rho \overline{v_{r} v_{\theta}}\right)=0 \\
\int \frac{v_{r} v_{\phi}}{r \sin \theta} \frac{\partial f}{\partial \phi} d^{3} \mathbf{v}=\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \int f v_{r} v_{\phi} d^{3} \mathbf{v} & =\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\left(\rho \overline{v_{r} v_{\phi}}\right)=0
\end{aligned}
$$

where the null values in the last two equations comes from the assumption of spherical symmetry,

$$
\int \frac{v_{r} v_{\theta}^{2}}{r} \frac{\partial f}{\partial v_{r}} d^{3} \mathbf{v}=\frac{1}{r} \int d v_{\phi} \int v_{\theta}^{2} d v_{\theta} \int v_{r} \frac{\partial f}{\partial v_{r}} d v_{r}=-\frac{1}{r} \int f v_{\theta}^{2} d^{3} \mathbf{v}=-\rho \frac{\overline{v_{\theta}^{2}}}{r}
$$

where the integral on v_{r} was integrated by parts, and similarly,

$$
\begin{aligned}
& \int \frac{v_{r} v_{\phi}^{2}}{r} \frac{\partial f}{\partial v_{r}} d^{3} \mathbf{v}=\frac{1}{r} \int d v_{\theta} \int v_{\phi}^{2} d v_{\phi} \int v_{r} \frac{\partial f}{\partial v_{r}} d v_{r}=-\frac{1}{r} \int f v_{\phi}^{2} d^{3} \mathbf{v}=-\rho \frac{\overline{v_{\phi}^{2}}}{r} \\
& \int \frac{\partial \Phi}{\partial r} v_{r} \frac{\partial f}{\partial v_{r}} d^{3} \mathbf{v}=\frac{\partial \Phi}{\partial r} \int d v_{\phi} \int d v_{\theta} \int v_{r} \frac{\partial f}{\partial v_{r}} d v_{r}=-\frac{\partial \Phi}{\partial r} \int f d^{3} \mathbf{v}=-\rho \frac{\partial \Phi}{\partial r}
\end{aligned}
$$

still with the same integration by parts,

$$
\int v_{r} v_{\phi}^{2} \frac{\cot \theta}{r} \frac{\partial f}{\partial v_{\theta}} d^{3} \mathbf{v}=\frac{\cot \theta}{r} \int v_{r} d v_{r} \int v_{\phi}^{2} d v_{\phi} \int \frac{\partial f}{\partial v_{\theta}} d v_{\theta}=0
$$

after integration by parts of the integral on v_{θ},

$$
\int \frac{v_{r}^{2} v_{\theta}}{r} \frac{\partial f}{\partial v_{\theta}} d^{3} \mathbf{v}=\frac{1}{r} \int v_{r}^{2} d v_{r} \int d v_{\phi} \int v_{\theta} \frac{\partial f}{\partial v_{\theta}} d v_{\theta}=-\frac{1}{r} \int f v_{r}^{2} d^{3} \mathbf{v}=-\frac{\rho \overline{v_{r}^{2}}}{r}
$$

and similarly,

$$
\int \frac{v_{r}^{2} v_{\phi}}{r} \frac{\partial f}{\partial v_{\phi}} d^{3} \mathbf{v}=\frac{1}{r} \int v_{r}^{2} d v_{r} \int d v_{\theta} \int v_{\phi} \frac{\partial f}{\partial v_{\phi}} d v_{\phi}=-\frac{1}{r} \int f v_{r}^{2} d^{3} \mathbf{v}=-\frac{\rho \overline{v_{r}^{2}}}{r}
$$

and finally,

$$
\begin{aligned}
\int \frac{v_{r} v_{\theta} v_{\phi} \cot \theta}{r} \frac{\partial f}{\partial v_{\phi}} d^{3} \mathbf{v} & =\frac{\cot \theta}{r} \int v_{r} d v_{r} \int v_{\theta} d v_{\theta} \int v_{\phi} \frac{\partial f}{\partial v_{\phi}} d v_{\phi} \\
& =-\frac{\cot \theta}{r} \int v_{r} v_{\theta} f d^{3} \mathbf{v}=-\frac{\rho \overline{v_{r} v_{\theta}} \cot \theta}{r}
\end{aligned}
$$

where we have again performed an integration by parts for the integral on v_{ϕ}. Since we're in a spherically symmetric case, we may choose any fixed θ, and we choose θ such that $\cot \theta=0$.
Putting everything together finally results in the general Jeans equation for spherical symmetry:

$$
\frac{\partial\left(\rho \overline{v_{r}}\right)}{\partial t}+\frac{\partial\left(\rho \overline{v_{r}^{2}}\right)}{\partial r}+\frac{\rho}{r}\left[2 \overline{v_{r}^{2}}-\left(\overline{v_{\theta}^{2}}+\overline{v_{\phi}^{2}}\right)\right]=-\rho \frac{\partial \Phi}{\partial r}
$$

One can introduce the velocity dispersion : $\overline{v_{i}^{2}}=\sigma_{i}^{2}+{\overline{v_{i}}}^{2}$
Isotropic systems: $\overline{v_{\phi}}=\overline{v_{\theta}}=\overline{v_{r}}$
For a stationary system with isotropic velocities, the Jeans equation reduces to :

$$
\frac{d\left(\rho \sigma_{r}^{2}\right)}{d r}=-\rho \frac{d \Phi}{d r}
$$

The potential Φ in the Jeans equation is always the gravitational potential representing the total mass of the system. ρ may be a mass density, a number density or even a luminosity density.

Problem 2:

Plummer:

$$
\begin{aligned}
\rho & =\frac{3 M}{4 \pi a^{3}}\left[1+\left(\frac{r}{a}\right)^{2}\right]^{-5 / 2} \\
\Phi & =-\frac{G M}{\sqrt{r^{2}+a^{2}}} \\
\frac{d \Phi}{d r} & =G M r\left(r^{2}+a^{2}\right)^{-3 / 2}
\end{aligned}
$$

Introducing these expressions into the last equation of Problem 2, we get

$$
\begin{aligned}
\frac{d\left(\rho \sigma_{r}^{2}\right)}{d r} & =-\frac{3 M}{4 \pi a^{3}}\left[1+\left(\frac{r}{a}\right)^{2}\right]^{-5 / 2} \cdot G M r\left(r^{2}+a^{2}\right)^{-3 / 2} \\
& =-\frac{3 G M^{2} a^{2}}{4 \pi} \frac{r}{\left(a^{2}+r^{2}\right)^{5 / 2}\left(a^{2}+r^{2}\right)^{3 / 2}}=-\frac{3 G M^{2} a^{2}}{4 \pi} \frac{r}{\left(a^{2}+r^{2}\right)^{4}}
\end{aligned}
$$

By integration, taking into account that $\rho \sigma_{r}^{2}$ must tend to zero when M tends to zero, one obtains

$$
\rho \sigma_{r}^{2}=\frac{G M^{2} a^{2}}{8 \pi\left(r^{2}+a^{2}\right)^{3}}
$$

Finally,

$$
\sigma_{r}^{2}=\frac{G M}{6 \sqrt{r^{2}+a^{2}}}
$$

Problem 3:

```
density = (3.*M/(4.*pi*rc**3))*(1+(r/rc)**2)**(-5./2.)
sigma = sqrt( 1./(8*pi*density) * M**2 * rc**2 /( r**2 + rc**2 )**3 )
```

