
Locality

Sanidhya Kashyap

EPFL, Fall 2022

Sanidhya Kashyap Locality 1 / 37



Outline

Locality principle
Types of locality
Principles to achieve locality

Caching
Prefetching
Partitioning

Locality examples
Data structure layout
Locality in locking primitives
Locality in NUMA machines

Sanidhya Kashyap Locality 2 / 37



We have been building things for efficiency

Figure 1: Devices are complicated

Sanidhya Kashyap Locality 3 / 37



Building things for efficiency, but . . .

Fundamental limitation exists in packing computation and
memory in a limited space
Similar analogies exists in real world

Cities vs towns vs villages
Computing: Fundamental limits exists in shrinking distances:

Quantum effects are already taking over
Failure of Dennard scaling
Cooling is becoming an issue even with 3D chips

Sanidhya Kashyap Locality 4 / 37



An example of complexity: the memory hierarchy

Time scale for CPU to access data (or data movement latency):
L1 access: ~2ns
L2 access: ~8ns
L3 access (local): ~12-20ns
L3 access (remote): ~30-90ns
Local DRAM: ~80ns
Remote DRAM: ~130-200ns
Byte addressable non-volatile memory: ~300ns
SSD: ~2-40us
Remote machine: ~2us
HDD: ~10ms

How do we ensure that we can keep up with this complexity?

Sanidhya Kashyap Locality 5 / 37



An example of complexity: the memory hierarchy

Time scale for CPU to access data (or data movement latency):
L1 access: ~2ns
L2 access: ~8ns
L3 access (local): ~12-20ns
L3 access (remote): ~30-90ns
Local DRAM: ~80ns
Remote DRAM: ~130-200ns
Byte addressable non-volatile memory: ~300ns
SSD: ~2-40us
Remote machine: ~2us
HDD: ~10ms

How do we ensure that we can keep up with this complexity?

Sanidhya Kashyap Locality 5 / 37



It is about efficient data access

Almost all (time/energy) cost is due to moving data over a
distance

Moving data to the CPU
Moving data through the CPU

Communication links also need spaces: Buses, networks are
bottlenecks
In several applications, CPUs mostly wait for data to arrive

Solutions exists: prefetching, cache hierarchy etc. . .

At the end, we want to minimize data movement or have data
ready when we want to work with it

Sanidhya Kashyap Locality 6 / 37



It is about efficient data access

Almost all (time/energy) cost is due to moving data over a
distance

Moving data to the CPU
Moving data through the CPU

Communication links also need spaces: Buses, networks are
bottlenecks
In several applications, CPUs mostly wait for data to arrive

Solutions exists: prefetching, cache hierarchy etc. . .

At the end, we want to minimize data movement or have data
ready when we want to work with it

Sanidhya Kashyap Locality 6 / 37



Locality is a notion that relates systems (software)
with the physical world. In computing, “it is about
the patterns of programs referencing their data.”

A program accesses a predictable sequence of memory
addresses.

Sanidhya Kashyap Locality 7 / 37



Working set for locality

Locality is about the patterns of programs referencing their
pages. Working set is about detecting those patterns in
real time and using them to make memory management
decisions.

Working set measures the intrinsic memory demands of
individual programs

Sanidhya Kashyap Locality 8 / 37



The rise of virtual memory

In the 50s ~60s
System: ATLAS computer
Two-level memory hierarchies:

Main memory + auxiliary storage
Demand paging
Backbone of multi-programming

Sanidhya Kashyap Locality 9 / 37



Background: Thrashing

“When it was first observed in the 1960s, thrashing was an
unexpected, sudden drop in throughput of a multiprogrammed
system . . . I explained the phenomenon in 1968 and showed that a
working-set memory controller would stabilize the system . . . ” –
Peter D. Denning

Sanidhya Kashyap Locality 10 / 37



Working set model

A unified approach to tackle the resource allocation problem:
process scheduling and memory management
Intended to model the behavior of programs, specifically the
program’s memory demand
Working set of a program:

Programmer’s view: Smallest collection of information present
in main memory to assure efficient execution of a program
System’s view: The set of most recently referenced pages

Working set model is applicable to programs at every
level!

Sanidhya Kashyap Locality 11 / 37



Working set model

A unified approach to tackle the resource allocation problem:
process scheduling and memory management
Intended to model the behavior of programs, specifically the
program’s memory demand
Working set of a program:

Programmer’s view: Smallest collection of information present
in main memory to assure efficient execution of a program
System’s view: The set of most recently referenced pages

Working set model is applicable to programs at every
level!

Sanidhya Kashyap Locality 11 / 37



Types of locality (from parallel programming)

1 Temporal locality
2 Spatial locality
3 Network locality

Sanidhya Kashyap Locality 12 / 37



1. Temporal locality
Access same memory location several times within a
small time window

Given a memory trace, a memory location occurs multiples of
times closely
Constants and memory locations in loops; hot functions

Every iteration of the
innermost loop for given out
loop indices (i,j) accesses
the same memory C[i][j]
Access to matrix B has
minimal temporal locality,
as success accesses to B are
separated by O(N2)

Figure 2: N*N multiplication

Sanidhya Kashyap Locality 13 / 37



2. Spatial locality

Access nearby memory locations within a small time
frame

Reading contents of a file
Accessing memory in a row-by-row fashion

Both A and C are accessing
memory in a row order and
have spatial locality
B does it in at the level of
columns and does not have
spatial locality Figure 3: N*N multiplication

Sanidhya Kashyap Locality 14 / 37



3. Network locality

Access to a memory location nearby is faster than
access to a memory location that is farther

CPU has faster access to memory locations mapped locally
than to memory locations mapped to other CPUs
Different access time exists among multiple CPUs

Computers are a set of distributed nodes
Each node communicate their own communication approaches
CPU to CPU can have varying latency in accessing memory
location

Also called non-uniform memory access (NUMA)
Example: NUMA-aware system design, Remote memory, etc.

Sanidhya Kashyap Locality 15 / 37



Locality becomes important for today’s machines

Figure 4: Simplified view of a 4-socket machine

Sanidhya Kashyap Locality 16 / 37



Realizing locality at various levels

From caches to CPU
Ex: data structure layout: arrays vs linked list

From one CPU to another
HPC algorithms, synchronization primitives

From memory to LLC
Ex: graph algorithms, packet processing

From one NUMA domain to another NUMA domain
Ex: data structures, synchronization primitives (locks)

From SSD to memory, out-of-core graph processing
Ex: Paging

From NIC to memory:
Ex: Remote memory, paging

Sanidhya Kashyap Locality 17 / 37



Locality principles

Caching
Keep a working set of data close to the CPU that is used
frequently

Prefer sequential access over random access
Based on device characteristic, sequential read/write is faster
than by random access
Eg: Prefetching (branch prediction)

Partitioning of data or computation
Splitting up the parts of resources and using divide and conquer

Use cases: working set, lock algorithms, out-of-core graph
algorithms, distributed kv stores

Sanidhya Kashyap Locality 18 / 37



Caching

Ubiquitous in systems
CPU caches
MMUs: TLB
Networks (edge caches)
OS/DB buffers; storage device controller, DRAMs in storage

Prefetching: Fill caches in a speculative manner, assume
sequential access
CPU branch prediction, buffer/page cache in the OS, DRAM
on storage controller

Sanidhya Kashyap Locality 19 / 37



One form: Sequential access

Sequential access is faster than random access

Comes from the physical notion
Hard drives

Mechanically moving parts: seek time » transfer time
Reading a byte is not cheaper than reading a page

Flash/solid state devices: only large blocks can be written, only
very ones erased
DRAM

Block addressing and transfer via the bus
TLBs (again)

Examples: write-ahead logging, block nested loop joins

Sanidhya Kashyap Locality 20 / 37



Partitioning

Decomposing and embarrassingly parallel tasks
Embarrassing parallel jobs are the ones that do not require any
synchronization, i.e., can work independently.
Decompose a large piece of the job, and process them in
parallel.
Ex. Map/reduce

But they are not applicable everywhere
Non-uniform distribution of access in a key-value store
Synchronizing tasks

Sanidhya Kashyap Locality 21 / 37



Partitioning

Decomposing and embarrassingly parallel tasks
Embarrassing parallel jobs are the ones that do not require any
synchronization, i.e., can work independently.
Decompose a large piece of the job, and process them in
parallel.
Ex. Map/reduce

But they are not applicable everywhere
Non-uniform distribution of access in a key-value store
Synchronizing tasks

Sanidhya Kashyap Locality 21 / 37



Why locality matters so much?

Locality starts impacting when the cost to access/modify/move
data changes by a huge factor.
Several scenarios to keep in mind with respect to locality:

Minimizing data movement
Caching, partitioning for parallel computation and movement
Involves either moving computation to data or moving data to
the computation unit

Data layout for efficient fetching of data
Sequential vs random

Overlapping computation and data movement
Prefetching

Sanidhya Kashyap Locality 22 / 37



Examples in detail

1 Data structure layout
2 Locking primitives minimizing data movement
3 NUMA: Data structure replication and partitioning

Sanidhya Kashyap Locality 23 / 37



Data layout

When accessing memory, the way CPU accesses data impacts
application’s performance
Two data structures as an example:

Arrays
Tree data structure

Sanidhya Kashyap Locality 24 / 37



Arrays

Matching storage layout with the looping order of algorithms
Sequential vs random access
Example: Matrix

Stored as A11, A12, . . . ,
A1n, A21, A22, A2n, . . . ,
Amn
Loop: for i in 1 . . . n { for
j in 1 .. m { Aij . . . }}
efficient
Loop: for j in 1 . . . m { for
i in 1 .. n { Aij . . . }}
inefficient

A11 A21 ... Am1
A12 A22 ... Am2
... ... ... ...
A1n A2n ... Amn

Align storage layout with
use cases if possible

Loop reordering in
compilers
Sorting, nesting,
co-clustering

Sanidhya Kashyap Locality 25 / 37



Array: Row vs column representation

Row representation: struct { int a, int b }[]
Column representation: struct { int a[], int b[] }
Column representation is usually much more efficient than row

Fewer objects are created (O(1) vs. O(array))

Sanidhya Kashyap Locality 26 / 37



B-tree

Balanced binary tree: twice as many nodes as in the above level
Tree grows exponentially fast as we go down

Impossible to store data in linear memory to maintain the
proximity of parent-child pairs

There is always be a non-local pairs going in particular direction

Q. What we can do in this case?

We can keep siblings local: bread-first enumeration or even
depth-first enumeration

There will be locality since the size of leaf levels dominates
Basis of index

Sanidhya Kashyap Locality 27 / 37



B-tree

Balanced binary tree: twice as many nodes as in the above level
Tree grows exponentially fast as we go down

Impossible to store data in linear memory to maintain the
proximity of parent-child pairs

There is always be a non-local pairs going in particular direction

Q. What we can do in this case?

We can keep siblings local: bread-first enumeration or even
depth-first enumeration

There will be locality since the size of leaf levels dominates
Basis of index

Sanidhya Kashyap Locality 27 / 37



Locality wrt Locks

Locks are the basic building blocks for concurrent systems
Locks:

Provide mutually exclusive access to shared data
Order waiters accessing the critical section >

Lock algorithms try to minimize the movement of shared data

Figure 5: Threads going to access a file protected by a lock

Sanidhya Kashyap Locality 28 / 37



Spin locks basic behavior

Waiters wait for their turn
Locks serialize the access: Introduce sequential bottleneck

Figure 6: Basic spinlock (taken from Art of Multiprocessor Programming)

Sanidhya Kashyap Locality 29 / 37



Locks first try to minimize contention

Contention: Threads
writing to the same cache
line (shared data)
Hardware maintains a
consistent state of the
shared data using the
coherence protocol Figure 7: Lock latency

TAS broadcasts to everyone of the lock situation
Saturates memory bandwidth (different from locality)

Queue lock: Maintains a queue of waiters and notify next in
line without bothering others

Minimizes shared data contention (cache-line)

Sanidhya Kashyap Locality 30 / 37



Locality in locks

Let’s consider a NUMA machine
Accessing the local socket is faster than remote socket

Figure 8: Accessing in non-NUMA fashion

Sanidhya Kashyap Locality 31 / 37



Locality in locks . . .

Let’s consider a NUMA machine
Accessing the local socket is faster than remote socket

Figure 9: Accessing in NUMA fashion

Group lock waiters from one socket, process them, and then
pass to another socket

Sanidhya Kashyap Locality 32 / 37



NUMA-aware lock

Comprises of multiple locks
(n+1)

A global lock
NUMA node lock on
each node Figure 10: Cohort lock

Acquire: First acquire the local node lock, then acquire the
global lock
Release: First release the global lock, then release the local lock
Maintain locality of data: minimize cache-line bouncing

Passes the lock within the same socket multiple times before
releasing the global lock

Sanidhya Kashyap Locality 33 / 37



Need to localize shared data

Critical section data is transferred for each lock acquire
The wait for lock increases with increasing thread count

Q. How can we localize shared data?

Sanidhya Kashyap Locality 34 / 37



Need to localize shared data

Critical section data is transferred for each lock acquire
The wait for lock increases with increasing thread count

Q. How can we localize shared data?

Sanidhya Kashyap Locality 34 / 37



Put the shared data on one core

Locality: Keep all shared data on one core
Use a server client model

Clients send request to server (encode their critical section
function)
Server processes request on client’s behalf

Shared data is ALWAYS accessed by one core!

Sanidhya Kashyap Locality 35 / 37



Data placement in NUMA machines

Goal: Keep application’s
data close to the
computation

Latency is problematic
for memory sensitive
applications
Bandwidth is an issue for
memory intensive
applications

Allocate memory using first touch or interleaved policy
First touch: allocating from the local node first
Interleaved: Allocate memory using round robin

Use page migration during application execution (AutoNUMA)

Sanidhya Kashyap Locality 36 / 37



Summary

Locality is one of the most important principles
Started from virtual memory; now applicable everywhere

Three types of locality: temporal, spatial, network

Locality is applicable across the whole stack

Sanidhya Kashyap Locality 37 / 37


