Introduction to Differentiable Manifolds	
EPFL – Fall 2022	F. Carocci, M. Cossarini
Exercise Series - Homework 3	2022 - 12 - 6

Exercise .1. (Week 8) Compute the flows of the following vector fields.

- (a) On the plane ℝ², the "angular" vector field X = x ∂/∂y y ∂/∂x.
 (b) A constant vector field X on the torus Tⁿ. (What is a constant vector field on the torus?)

Exercise .2 (Week 10). Consider the following 1-form on $M = \mathbb{R}^3$:

$$\omega = \frac{-4z \,\mathrm{d}x}{(x^2+1)^2} + \frac{2y \,\mathrm{d}y}{y^2+1} + \frac{2x \,\mathrm{d}z}{x^2+1}$$

- (a) Set up and compute the line integral of ω along the line going from (0,0,0)to (1, 1, 1)
- (b) Consider the smooth map $\Psi: W \to \mathbb{R}^3$ given by $(r, \varphi, \theta) \in W := \mathbb{R}^+ \times$ $(0, 2\pi) \times (0, \pi)$:

$$\Psi(r,\varphi,\theta) = (r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta) \in \mathbb{R}^3.$$

Compute $\Psi^*\omega$.

Exercise .3 (Week 11). For a point $p \in \mathbb{R}^3$ and vectors $v, w \in T_p \mathbb{R}^3 \equiv \mathbb{R}^3$ we define $\omega|_p(v,w) := \det(p \mid v \mid w)$. Show that ω is a smooth differential 2-form on \mathbb{R}^3 , and express ω as a linear combination of the elementary alternating 2-forms determined by the standard coordinate chart (x^0, x^1, x^2) .