Introduction to Differentiable Manifolds		
EPFL - Fall 2022	F. Carocci, M. Cossarini	
Exercise Series - Homework 3	2022-12-6	

Exercise .1. (Week 8) Compute the flows of the following vector fields.
(a) On the plane \mathbb{R}^{2}, the "angular" vector field $X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$.
(b) A constant vector field X on the torus \mathbb{T}^{n}. (What is a constant vector field on the torus?)

Exercise . 2 (Week 10). Consider the following 1-form on $M=\mathbb{R}^{3}$:

$$
\omega=\frac{-4 z \mathrm{~d} x}{\left(x^{2}+1\right)^{2}}+\frac{2 y \mathrm{~d} y}{y^{2}+1}+\frac{2 x \mathrm{~d} z}{x^{2}+1}
$$

(a) Set up and compute the line integral of ω along the line going from $(0,0,0)$ to $(1,1,1)$
(b) Consider the smooth map $\Psi: W \rightarrow \mathbb{R}^{3}$ given by $(r, \varphi, \theta) \in W:=\mathbb{R}^{+} \times$ $(0,2 \pi) \times(0, \pi)$:

$$
\Psi(r, \varphi, \theta)=(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) \in \mathbb{R}^{3} .
$$

Compute $\Psi^{*} \omega$.
Exercise. $\mathbf{3}$ (Week 11). For a point $p \in \mathbb{R}^{3}$ and vectors $v, w \in \mathrm{~T}_{p} \mathbb{R}^{3} \equiv \mathbb{R}^{3}$ we define $\left.\omega\right|_{p}(v, w):=\operatorname{det}(p|v| w)$. Show that ω is a smooth differential 2 -form on \mathbb{R}^{3}, and express ω as a linear combination of the elementary alternating 2 -forms determined by the standard coordinate chart $\left(x^{0}, x^{1}, x^{2}\right)$.

