Manifolds with boundary

Exercise 10.1. Let M be a smooth n-dimensional manifold with boundary, prove that T_pM is an n-dimensional real vector space:

- (a) First prove that $T_a \mathbb{H}^n \xrightarrow{d\iota} T_a \mathbb{R}^n$ is an isomorphism (using the fact that if f is a smooth function on \mathbb{H}^n then there exists an extension \tilde{f} to a smooth function on all \mathbb{R}^n ; look back at Exercise sheet 2 and 3)
- (b) As we did in the case of smooth manifolds without boundary, prove that $T_p U \cong T_p M$ for each open U again using the Extension Lemma and then use smooth charts (Here, once again, remember what a smooth chart means in the case of a manifold with boundary)

Solution. See Proposition's 3.11 and 3.12 of Lee's "Introduction to Smooth Manifolds". $\hfill \Box$

Line integrals

Exercise 10.2. Let $M = \mathbb{R}^2 \setminus 0$. Consider the 1-form

$$\omega = \frac{x \,\mathrm{d}y - y \,\mathrm{d}x}{x^2 + y^2}.$$

Let $\gamma : [0, 2\pi] \to M$ be the smooth curve defined by $t \mapsto (\cos t, \sin t)$.

(a) Compute the integral of ω along γ .

Solution. We compute first the pullback $\gamma^* \omega$, i.e. the 1-form on $[0, 2\pi]$ that assigns to each point $t \in [0, 2\pi]$ the covector

$$(\gamma^*\omega)|_t = \omega|_{\gamma(t)} \circ D\gamma|_t.$$

We express this covector as $\gamma^* \omega|_t = g(t) \, d\tau$, where $\tau = \mathrm{id}_{\mathbb{R}}$ is the standard coordinate on \mathbb{R} , and $g: [0, 2\pi] \to \mathbb{R}$ is a function that we obtain by applying the covector $\gamma^* \omega|_t$ to the standard vector $\frac{\partial}{\partial \tau}|_t \in T_t \mathbb{R}$, that is,

$$g(t) = (\gamma^* \omega)|_t \left(\frac{\partial}{\partial \tau} \Big|_t \right)$$

= $\omega|_{\gamma(t)} \left(D\gamma|_t \frac{\partial}{\partial \tau} \Big|_t \right)$
= $\omega|_{\gamma(t)} (\gamma'(t))$
= $(\cos t \, \mathrm{d}y - y \, \mathrm{d}x)|_{\gamma(t)} \left(-\sin t \frac{\partial}{\partial x} + \cos t \frac{\partial}{\partial y} \right) \Big|_{\gamma(t)}$
= $(\cos t)^2 + (\sin t)^2 = 1.$

This means that $\gamma^* \omega = d\tau$.

Now we can compute the integral

$$\int_{\gamma} \omega = \int_{[0,2\pi]} \gamma^* \omega = \int_{[0,2\pi]} h(t) \, \mathrm{d}t = \int_{[0,2\pi]} 1 \, \mathrm{d}t = 2\pi$$

(b) Prove that omega is not exact, i.e. is not of the form dh for $h \in C^{\infty}(M)$.

Solution. The integral of an exact 1-form along a closed path is zero by Stokes' theorem. Since γ is a closed path and the integral of ω along γ is not zero, we conclude that ω is not exact.

Exercise 10.3 (to hand in). Consider the following 1-form on $M = \mathbb{R}^3$:

$$\omega = \frac{-4z \, \mathrm{d}x}{(x^2+1)^2} + \frac{2y \, \mathrm{d}y}{y^2+1} + \frac{2x \, \mathrm{d}z}{x^2+1}$$

- (a) Set up and compute the line integral of ω along the line going from (0,0,0) to (1,1,1)
- (b) Consider the smooth map $\Psi : W \to \mathbb{R}^3$ given by $(r, \varphi, \theta) \in W := \mathbb{R}^+ \times (0, 2\pi) \times (0, \pi)$:

$$\Psi(r,\varphi,\theta) = (r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta) \in \mathbb{R}^3.$$

Compute $\Psi^*\omega$.

Exercise 10.4. On the plane \mathbb{R}^2 with the standard coordinates (x, y) consider the 1-form $\theta = x \, dy$. Compute the integral of θ along each side of the square $[1, 2] \times [3, 4]$, with each of the two orientations. (There are 8 numbers to compute.)

Solution. The four integrals along the horizontal sides are zero because $dy \equiv 0$ on any horizontal line.

Along a vertical line given by an equation x = c, with $c \in \mathbb{R}$ a constant, the vector field θ coincides with the 1-form $c \, dy \in \Omega^1(\mathbb{R}^2)$, which is the differential of the function $h_c(x, y) = cy$. Therefore the integral of θ along a segment of such a vertical line is equal to the variation of the function h_c along this segment.

Along the segment $\{2\} \times [3,4]$ we have c = 2, thus the integral of θ is 2 if we go upwards and -2 if we go downwards. Similarly, along the segment $\{1\} \times [3,4]$ we have c = 1, thus the integral of θ is 1 if we go upwards and -1 if we go downwards. \Box

Tensors

Exercise 10.5. Let $\mathcal{B} = (E_i)_i$ and $\widetilde{\mathcal{B}} = (\widetilde{E}_j)_j$ be two bases of a vector space $V \simeq \mathbb{R}^n$, and let $\mathcal{B}^* = (\varepsilon^i)_i$ and $\widetilde{\mathcal{B}}^* = (\widetilde{\varepsilon}^j)_j$ be the respective dual bases. Note that a tensor $T \in \operatorname{Ten}^k V$ can be written as

$$T = \sum_{i_0,\dots,i_{k-1}} T_{i_0,\dots,i_{k-1}} \varepsilon^{i_0} \otimes \dots \otimes \varepsilon^{i_{k-1}} \quad \text{or as} \quad T = \sum_{j_0,\dots,j_{k-1}} \widetilde{T}_{j_0,\dots,j_{k-1}} \widetilde{\varepsilon}^{j_0} \otimes \dots \otimes \widetilde{\varepsilon}^{j_{k-1}}.$$

Find the transformation law that expresses the coefficients $\widetilde{T}_{j_0,\ldots,j_{k-1}}$ in terms of the coefficients $T_{i_0,\ldots,i_{k-1}}$.

Solution. There exists an invertible $n \times n$ matrix $(a_j^i)_{i,j \in \underline{n}}$ such that $\widetilde{E}_j = \sum_i a_j^i E_i$. For any k-index $J = (j_0, \ldots, j_{k-1}) \in \underline{n}^k$ we have

$$\widetilde{T}_{J} = T(\widetilde{E}_{J}) = T(\widetilde{E}_{j_{0}}, \dots, \widetilde{E}_{j_{k-1}}) = T\left(\sum_{i_{0} \in \underline{n}} a_{j_{0}}^{i_{0}} E_{i_{0}}, \dots, \sum_{i_{k-1} \in \underline{n}} a_{j_{k-1}}^{i_{k-1}} E_{i_{k-1}}\right)$$
$$= \sum_{I \in \underline{n}^{k}} a_{j_{0}}^{i_{0}} \cdots a_{j_{k-1}}^{i_{k-1}} T(E_{i_{0}}, \dots, E_{i_{k-1}})$$
$$= \sum_{I \in \underline{n}^{k}} a_{j_{0}}^{i_{0}} \cdots a_{j_{k-1}}^{i_{k-1}} T_{I}.$$

Exercise 10.6 (Alternating covariant tensors). Let V be a finite-dimensional real vector space. Let $T \in \text{Ten}^k V$. Suppose that with respect to some basis ε^i of V^*

$$T = \sum_{1 \le i_1, \dots, i_k < n} T_{i_1 \cdots i_k} \varepsilon^{i_1} \otimes \cdots \otimes \varepsilon^{i_k}.$$

Show that T is alternating iff:

(a) for all $\sigma \in S_k$: $T_{i_{\sigma(1)}\cdots i_{\sigma(k)}} = \operatorname{sgn}(\sigma) T_{i_1\cdots i_k}$. Solution. Suppose that T is alternating, then for all $\sigma \in S_n$ we have

$$T_{i_{\sigma(1)},\dots,i_{\sigma(k)}} = T(E_{i_{\sigma(1)}},\dots,E_{i_{\sigma(k)}}) = \operatorname{sgn}(\sigma) T(E_{i_1},\dots,E_{i_k}) = \operatorname{sgn}(\sigma) T_{i_1,\dots,i_k}$$

Conversely if $T_{i_{\sigma(1)},\dots,i_{\sigma(k)}} = \operatorname{sgn} \sigma T_{i_1,\dots,i_k}$ for all $\sigma \in S_n$, then in particular

 $T_{\alpha_1,\dots,\alpha_i,\dots,\alpha_j,\dots,\alpha_k} = -T_{\alpha_1,\dots,\alpha_j,\dots,\alpha_i,\dots,\alpha_k}$

Then for any $X_1, \ldots, X_k \in V$ the multi-linearity of T yields (we use the summation convention where repeated indices are summed over)

$$T(X_1, \dots, X_i, \dots, X_j, \dots, X_k)$$

= $T(X_1^{\alpha_1} E_{\alpha_1}, \dots, X_i^{\alpha_i} E_{\alpha_i}, \dots, X_j^{\alpha_j} E_{\alpha_j}, \dots, X_k^{\alpha_k} E_{\alpha_k})$
= $X_1^{\alpha_1} \dots X_k^{\alpha_k} T(E_{\alpha_1}, \dots, E_{\alpha_i}, \dots, E_{\alpha_j}, \dots, E_{\alpha_k})$
= $-X_1^{\alpha_1} \dots X_k^{\alpha_k} T(E_{\alpha_1}, \dots, E_{\alpha_j}, \dots, E_{\alpha_i}, \dots, E_{\alpha_k})$
= $-T(X_1, \dots, X_j, \dots, X_i, \dots, X_k)$

Hence T is alternating.

(b) $T(..., X_s, ..., X_t, ...) = -T(..., X_s, ..., X_t, ...)$

Solution. Both sides are multilinear in the ω^i and so the result follows from the one for the basis covectors $\omega^i = \varepsilon^{\ell_i}$, which we have seen in the lecture.

Nevertheless, let us carry out the argument in detail. In the lecture we saw

$$\varepsilon^{\ell_1} \wedge \dots \wedge \varepsilon^{\ell_k}(X_1, \dots, X_k) = \det(\varepsilon^{\ell_r}(X_j))_r^j$$

(on the right hand side we have the determinant of a $k \times k$ matrix $(r, j = 1, \ldots, k)$; think of j as the column index and r as the row index).

Now for arbitrary covectors $\omega^r = \sum_{\ell=1}^n \omega_\ell^r \varepsilon^\ell$ we have (for the first equality we use the multilinearity of the wedge product)

$$\begin{split} \omega^{1} \wedge \dots \wedge \omega^{k}(X_{1}, \dots, X_{k}) &= \sum_{\ell_{1}=1}^{n} \dots \sum_{\ell_{k}=1}^{n} \omega_{\ell_{1}}^{1} \dots \omega_{\ell_{k}}^{k} \varepsilon^{\ell_{1}} \wedge \dots \wedge \varepsilon^{\ell_{k}}(X_{1}, \dots, X_{k}) \\ &= \sum_{\ell_{1}=1}^{n} \dots \sum_{\ell_{k}=1}^{n} \omega_{\ell_{1}}^{1} \dots \omega_{\ell_{k}}^{k} \det(\varepsilon^{\ell_{r}}(X_{j}))_{r}^{j} \\ &= \sum_{\ell_{1}=1}^{n} \dots \sum_{\ell_{k}=1}^{n} \omega_{\ell_{1}}^{1} \dots \omega_{\ell_{k}}^{k} \det\begin{pmatrix}\varepsilon^{\ell_{1}}(X_{1}) & \dots & \varepsilon^{\ell_{1}}(X_{k})\\ \vdots & \vdots\\ \varepsilon^{\ell_{k}}(X_{1}) & \dots & \varepsilon^{\ell_{k}}(X_{k})\end{pmatrix} \\ &= \det(\omega^{r}(X_{j}))_{r}^{i} \end{split}$$

where in the last step we multiplied the *r*-th line by $\omega_{\ell_r}^r$ and replaced $\sum_{\ell_r=1}^n \omega_{\ell_r}^r \varepsilon^{\ell_r} = \omega^r$.