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Manifolds with boundary

Exercise 10.1. Let M be a smooth n-dimensional manifold with boundary, prove
that T,,M is an n—dimensional real vector space:

(a) First prove that T,H" N T,R™ is an isomorphism (using the fact that if f is a
smooth function on H" then there exists an extension fto a smooth function
on all R™; look back at Exercise sheet 2 and 3)

(b) As we did in the case of smooth manifolds without boundary, prove that
T,U = T,M for each open U again using the Extension Lemma and then use
smooth charts (Here, once again, remember what a smooth chart means in
the case of a manifold with boundary)

Solution. See Proposition’s 3.11 and 3.12 of Lee’s “Introduction to Smooth Mani-
folds”. O

Line integrals

Exercise 10.2. Let M = R?\ 0. Consider the 1-form
_zdy —ydx
o op2y?
Let v : [0,27] — M be the smooth curve defined by ¢ — (cost,sint).
(a) Compute the integral of w along .
Solution. We compute first the pullback v*w, i.e. the 1-form on [0, 27] that
assigns to each point ¢ € [0, 27] the covector
(Y'w)le = wly) © DAle-
We express this covector as y*w|; = ¢(t) dr, where 7 = idg is the standard
coordinate on R, and ¢ : [0, 27] — R is a function that we obtain by applying
the covector v*w|; to the standard vector a% € T;R, that is,

2

o) = 0ol (5

’

., 0 0
= (cost dy —y dz)|,) (— sin ¢ E + cost 8)

o Y7

= (cost)? + (sint)? = 1.

This means that v*w = dr.
Now we can compute the integral

/w:/ ’y*w:/ h(t)dt:/ 1dt=27
~y [0,27] [0,27] [0,27]

(b) Prove that omega is not exact, i.e. is not of the form dh for h € C*(M).
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Solution. The integral of an exact 1-form along a closed path is zero by Stokes’
theorem. Since v is a closed path and the integral of w along v is not zero, we
conclude that w is not exact. g

Exercise 10.3 (to hand in). Consider the following 1-form on M = R3:
—4zdx 2y dy 2x dz
2 5 T2 T3

(x24+1)2  y2+1 22+1

(a) Set up and compute the line integral of w along the line going from (0,0, 0)
to (1,1,1)

onsider the smooth map : — given by (r,p, S = X

b) Consider th h map ¥ : W — R3 given by (r,¢,0) € W := R*

(0,27) x (0,7):

U(r,,0) = (rcospsinb, rsinpsiné, rcosf) € R>.

w =

Compute U*w.

Exercise 10.4. On the plane R? with the standard coordinates (x,%) consider the
1-form 6 = x dy. Compute the integral of 6 along each side of the square [1, 2] x [3, 4],
with each of the two orientations. (There are 8 numbers to compute.)

Solution. The four integrals along the horizontal sides are zero because dy = 0 on
any horizontal line.

Along a vertical line given by an equation x = ¢, with ¢ € R a constant, the
vector field @ coincides with the 1-form cdy € Q'(R?), which is the differential of the
function h.(x,y) = cy. Therefore the integral of 6 along a segment of such a vertical
line is equal to the variation of the function h. along this segment.

Along the segment {2} x [3,4] we have ¢ = 2, thus the integral of 0 is 2 if we go
upwards and -2 if we go downwards. Similarly, along the segment {1} x [3, 4] we have
¢ =1, thus the integral of 6 is 1 if we go upwards and -1 if we go downwards. 0

Tensors

Exercise 10.5. Let B = (E;); and B = (Ej)j be two bases of a vector space V ~ R",
and let B* = (&%); and B* = (¢7); be the respective dual bases. Note that a tensor
T € Ten* V can be written as

T= Z Tig,...ig—1 €0® - -@e*1  oras T= Z j\:-’jov-"vjk—l 0.k,

1050wyl —1 JOsesJk—1

Find the transformation law that expresses the coefficients fm] in terms of the

coefficients 75 .

k—1

k1"

Solution. There exists an invertible n x n matrix (a;)m-gﬁ such that Ej =, aé-EZ-.

For any k-index J = (jo, ..., jx—1) € n* we have
Ty =T(E;)=T(Ejp,- ., Ej_ ) =T | Y a® Eig,..., > al ' By,
0EN ik—1€EN
; i

=) adl - af T T(Ey, ..., By )
Ienk

_ 0 . (]

o Z @ s T
Ienk

g

Exercise 10.6 (Alternating covariant tensors). Let V' be a finite-dimensional real
vector space. Let T € Ten® V. Suppose that with respect to some basis ! of V*

T = § T if €' Q- Qg™
1<iq i <n
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Show that T is alternating iff:
(a) for all o € S: T;, )iy = 881(0) Ty iy
Solution. Suppose that T is alternating, then for all o € S;, we have
T(Eiau)v e ’Eia(k)> =sgn(o)T(E;,,...,E;,) =sgn(o) Ti, i,

Conversely if ﬂa(l)r“:ia(k) =sgnoT1; 4, forall o € Sy, then in particular

T;

0(1)7“‘)i0(k) =

T oirorgson = —Tonr oyt
Then for any Xi,...,X; € V the multi-linearity of T yields (we use the
summation convention where repeated indices are summed over)
T(Xy,.... X, .., X5, ..., Xk)
=T(X{"Eay,s -, X" Bayy o, X By oo, X ¥ Eay)
= X" X T (Eays .. Eoyy oo Eoyy .. Eay,)
= X" X*T(Eay,s .. Eayy oo Eayy - Eay,)
=-T(X1,..., X}, ..., Xs,..., Xp)
Hence T is alternating. O
b)) T(..., Xg, ..., Xpyo o) ==T(.., Xgyoo o, Xgy o)
Solution. Both sides are multilinear in the w® and so the result follows from

the one for the basis covectors w® = %, which we have seen in the lecture.
Nevertheless, let us carry out the argument in detail. In the lecture we saw

551 A A 567“()(17 ce ,Xk) = det(sZT(Xj))j

r

(on the right hand side we have the determinant of a k x k matrix (r,j =
1,...k; think of j as the column index and r as the row index).
Now for arbitrary covectors w” = 3", whe® we have (for the first equality

we use the multilinearity of the wedge product)

n n
wl/\-~~/\wk(X1,...,Xk) = Z Zwéll..wfkgzl/\.../\g&c(X17"'7Xk)
(=1  f=1

= D D> w e wh, det(e (X))

l1=1 =1

n n el (Xl) gl (Xk)
l1=1 L=1 5€k(X1) 84’“(Xk)
= det(w'(X)));
where in the last step we multiplied the r-th line by wj and replaced >~ _; wj €
wr. T T s
0

¢



