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Manifolds with boundary

Exercise 10.1. Let M be a smooth n-dimensional manifold with boundary, prove

that TpM is an n−dimensional real vector space:

(a) First prove that TaHn dι−→ TaRn is an isomorphism (using the fact that if f is a

smooth function on Hn then there exists an extension f̃ to a smooth function

on all Rn; look back at Exercise sheet 2 and 3)

(b) As we did in the case of smooth manifolds without boundary, prove that

TpU ∼= TpM for each open U again using the Extension Lemma and then use

smooth charts (Here, once again, remember what a smooth chart means in

the case of a manifold with boundary)

Solution. See Proposition’s 3.11 and 3.12 of Lee’s “Introduction to Smooth Mani-

folds”. �

Line integrals

Exercise 10.2. Let M = R2 \ 0. Consider the 1-form

ω =
x dy − y dx

x2 + y2
.

Let γ : [0, 2π]→M be the smooth curve defined by t 7→ (cos t, sin t).

(a) Compute the integral of ω along γ.

Solution. We compute first the pullback γ∗ω, i.e. the 1-form on [0, 2π] that

assigns to each point t ∈ [0, 2π] the covector

(γ∗ω)|t = ω|γ(t) ◦Dγ|t.

We express this covector as γ∗ω|t = g(t) dτ , where τ = idR is the standard

coordinate on R, and g : [0, 2π]→ R is a function that we obtain by applying

the covector γ∗ω|t to the standard vector ∂
∂τ

∣∣
t
∈ TtR, that is,

g(t) = (γ∗ω)|t
(
∂

∂τ

∣∣∣∣
t

)
= ω|γ(t)

(
Dγ|t

∂

∂τ

∣∣∣∣
t

)
= ω|γ(t)(γ′(t))

= (cos t dy − y dx)|γ(t)
(
− sin t

∂

∂x
+ cos t

∂

∂y

)∣∣∣∣
γ(t)

= (cos t)2 + (sin t)2 = 1.

This means that γ∗ω = dτ .

Now we can compute the integral∫
γ
ω =

∫
[0,2π]

γ∗ω =

∫
[0,2π]

h(t) dt =

∫
[0,2π]

1 dt = 2π

�

(b) Prove that omega is not exact, i.e. is not of the form dh for h ∈ C∞(M).
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Solution. The integral of an exact 1-form along a closed path is zero by Stokes’

theorem. Since γ is a closed path and the integral of ω along γ is not zero, we

conclude that ω is not exact. �

Exercise 10.3 (to hand in). Consider the following 1-form on M = R3:

ω =
−4z dx

(x2 + 1)2
+

2y dy

y2 + 1
+

2x dz

x2 + 1

(a) Set up and compute the line integral of ω along the line going from (0, 0, 0)

to (1, 1, 1)

(b) Consider the smooth map Ψ : W → R3 given by (r, ϕ, θ) ∈ W := R+ ×
(0, 2π)× (0, π):

Ψ(r, ϕ, θ) = (r cosϕ sin θ, r sinϕ sin θ, r cos θ) ∈ R3.

Compute Ψ∗ω.

Exercise 10.4. On the plane R2 with the standard coordinates (x, y) consider the

1-form θ = x dy. Compute the integral of θ along each side of the square [1, 2]× [3, 4],

with each of the two orientations. (There are 8 numbers to compute.)

Solution. The four integrals along the horizontal sides are zero because dy ≡ 0 on

any horizontal line.

Along a vertical line given by an equation x = c, with c ∈ R a constant, the

vector field θ coincides with the 1-form cdy ∈ Ω1(R2), which is the differential of the

function hc(x, y) = cy. Therefore the integral of θ along a segment of such a vertical

line is equal to the variation of the function hc along this segment.

Along the segment {2} × [3, 4] we have c = 2, thus the integral of θ is 2 if we go

upwards and -2 if we go downwards. Similarly, along the segment {1}× [3, 4] we have

c = 1, thus the integral of θ is 1 if we go upwards and -1 if we go downwards. �

Tensors

Exercise 10.5. Let B = (Ei)i and B̃ = (Ẽj)j be two bases of a vector space V ' Rn,

and let B∗ = (εi)i and B̃∗ = (ε̃j)j be the respective dual bases. Note that a tensor

T ∈ Tenk V can be written as

T =
∑

i0,...,ik−1

Ti0,...,ik−1
εi0⊗· · ·⊗εik−1 or as T =

∑
j0,...,jk−1

T̃j0,...,jk−1
ε̃j0⊗· · ·⊗ε̃jk−1 .

Find the transformation law that expresses the coefficients T̃j0,...,jk−1
in terms of the

coefficients Ti0,...,ik−1
.

Solution. There exists an invertible n × n matrix (aij)i,j∈n such that Ẽj =
∑

i a
i
jEi.

For any k-index J = (j0, . . . , jk−1) ∈ nk we have

T̃J = T (ẼJ) = T (Ẽj0 , . . . , Ẽjk−1
) = T

∑
i0∈n

ai0j0 Ei0 , . . . ,
∑

ik−1∈n
a
ik−1

jk−1
Eik−1


=
∑
I∈nk

ai0j0 · · · a
ik−1

jk−1
T (Ei0 , . . . , Eik−1

)

=
∑
I∈nk

ai0j0 · · · a
ik−1

jk−1
TI .

�

Exercise 10.6 (Alternating covariant tensors). Let V be a finite-dimensional real

vector space. Let T ∈ Tenk V . Suppose that with respect to some basis εi of V ∗

T =
∑

1≤i1,...,ik<n
Ti1···ikε

i1 ⊗ · · · ⊗ εik .
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Show that T is alternating iff:

(a) for all σ ∈ Sk: Tiσ(1)···iσ(k) = sgn(σ)Ti1···ik .

Solution. Suppose that T is alternating, then for all σ ∈ Sn we have

Tiσ(1),...,iσ(k) = T (Eiσ(1) , . . . , Eiσ(k)) = sgn(σ)T (Ei1 , . . . , Eik) = sgn(σ)Ti1,...,ik

Conversely if Tiσ(1),...,iσ(k) = sgnσ Ti1,...,ik for all σ ∈ Sn, then in particular

Tα1,...,αi,...,αj ,...,αk = −Tα1,...,αj ,...,αi,...,αk

Then for any X1, . . . , Xk ∈ V the multi-linearity of T yields (we use the

summation convention where repeated indices are summed over)

T (X1, . . . , Xi, . . . , Xj , . . . , Xk)

= T (Xα1
1 Eα1 , . . . , X

αi
i Eαi , . . . , X

αj
j Eαj , . . . , X

αk
k Eαk)

= Xα1
1 . . . Xαk

k T (Eα1 , . . . , Eαi , . . . , Eαj , . . . , Eαk)

= −Xα1
1 . . . Xαk

k T (Eα1 , . . . , Eαj , . . . , Eαi , . . . , Eαk)

= −T (X1, . . . , Xj , . . . , Xi, . . . , Xk)

Hence T is alternating. �

(b) T (. . . , Xs, . . . , Xt, . . . ) = −T (. . . , Xs, . . . , Xt, . . . )

Solution. Both sides are multilinear in the ωi and so the result follows from

the one for the basis covectors ωi = ε`i , which we have seen in the lecture.

Nevertheless, let us carry out the argument in detail. In the lecture we saw

ε`1 ∧ · · · ∧ ε`k(X1, . . . , Xk) = det(ε`r(Xj))
j
r

(on the right hand side we have the determinant of a k × k matrix (r, j =

1, . . . k; think of j as the column index and r as the row index).

Now for arbitrary covectors ωr =
∑n

`=1 ω
r
`ε
` we have (for the first equality

we use the multilinearity of the wedge product)

ω1 ∧ · · · ∧ ωk(X1, . . . , Xk) =

n∑
`1=1

· · ·
n∑

`k=1

ω1
`1 · · ·ω

k
`k
ε`1 ∧ · · · ∧ ε`k(X1, . . . , Xk)

=
n∑

`1=1

· · ·
n∑

`k=1

ω1
`1 · · ·ω

k
`k

det(ε`r(Xj))
j
r

=

n∑
`1=1

· · ·
n∑

`k=1

ω1
`1 · · ·ω

k
`k

det

ε
`1(X1) · · · ε`1(Xk)

...
...

ε`k(X1) · · · ε`k(Xk)


= det(ωr(Xj))

i
r

where in the last step we multiplied the r-th line by ωr`r and replaced
∑n

`r=1 ω
r
`r
ε`r =

ωr.

�
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