Manifolds with boundary

Exercise 10.1. Let M be a smooth n-dimensional manifold with boundary, prove that $T_{p} M$ is an n-dimensional real vector space:
(a) First prove that $T_{a} \mathbb{H}^{n} \xrightarrow{d \iota} T_{a} \mathbb{R}^{n}$ is an isomorphism (using the fact that if f is a smooth function on \mathbb{H}^{n} then there exists an extension \tilde{f} to a smooth function on all \mathbb{R}^{n}; look back at Exercise sheet 2 and 3)
(b) As we did in the case of smooth manifolds without boundary, prove that $T_{p} U \cong T_{p} M$ for each open U again using the Extension Lemma and then use smooth charts (Here, once again, remember what a smooth chart means in the case of a manifold with boundary)

Solution. See Proposition's 3.11 and 3.12 of Lee's "Introduction to Smooth Manifolds".

Line integrals

Exercise 10.2. Let $M=\mathbb{R}^{2} \backslash 0$. Consider the 1-form

$$
\omega=\frac{x \mathrm{~d} y-y \mathrm{~d} x}{x^{2}+y^{2}} .
$$

Let $\gamma:[0,2 \pi] \rightarrow M$ be the smooth curve defined by $t \mapsto(\cos t, \sin t)$.
(a) Compute the integral of ω along γ.

Solution. We compute first the pullback $\gamma^{*} \omega$, i.e. the 1 -form on $[0,2 \pi]$ that assigns to each point $t \in[0,2 \pi]$ the covector

$$
\left.\left(\gamma^{*} \omega\right)\right|_{t}=\left.\left.\omega\right|_{\gamma(t)} \circ D \gamma\right|_{t} .
$$

We express this covector as $\left.\gamma^{*} \omega\right|_{t}=g(t) \mathrm{d} \tau$, where $\tau=\operatorname{id}_{\mathbb{R}}$ is the standard coordinate on \mathbb{R}, and $g:[0,2 \pi] \rightarrow \mathbb{R}$ is a function that we obtain by applying the covector $\left.\gamma^{*} \omega\right|_{t}$ to the standard vector $\left.\frac{\partial}{\partial \tau}\right|_{t} \in T_{t} \mathbb{R}$, that is,

$$
\begin{aligned}
g(t) & =\left.\left(\gamma^{*} \omega\right)\right|_{t}\left(\left.\frac{\partial}{\partial \tau}\right|_{t}\right) \\
& =\left.\omega\right|_{\gamma(t)}\left(\left.\left.D \gamma\right|_{t} \frac{\partial}{\partial \tau}\right|_{t}\right) \\
& =\left.\omega\right|_{\gamma(t)}\left(\gamma^{\prime}(t)\right) \\
& =\left.\left.(\cos t \mathrm{~d} y-y \mathrm{~d} x)\right|_{\gamma(t)}\left(-\sin t \frac{\partial}{\partial x}+\cos t \frac{\partial}{\partial y}\right)\right|_{\gamma(t)} \\
& =(\cos t)^{2}+(\sin t)^{2}=1 .
\end{aligned}
$$

This means that $\gamma^{*} \omega=\mathrm{d} \tau$.
Now we can compute the integral

$$
\int_{\gamma} \omega=\int_{[0,2 \pi]} \gamma^{*} \omega=\int_{[0,2 \pi]} h(t) \mathrm{d} t=\int_{[0,2 \pi]} 1 \mathrm{~d} t=2 \pi
$$

(b) Prove that omega is not exact, i.e. is not of the form $\mathrm{d} h$ for $h \in C^{\infty}(M)$.

Solution. The integral of an exact 1-form along a closed path is zero by Stokes' theorem. Since γ is a closed path and the integral of ω along γ is not zero, we conclude that ω is not exact.

Exercise 10.3 (to hand in). Consider the following 1-form on $M=\mathbb{R}^{3}$:

$$
\omega=\frac{-4 z \mathrm{~d} x}{\left(x^{2}+1\right)^{2}}+\frac{2 y \mathrm{~d} y}{y^{2}+1}+\frac{2 x \mathrm{~d} z}{x^{2}+1}
$$

(a) Set up and compute the line integral of ω along the line going from $(0,0,0)$ to $(1,1,1)$
(b) Consider the smooth map $\Psi: W \rightarrow \mathbb{R}^{3}$ given by $(r, \varphi, \theta) \in W:=\mathbb{R}^{+} \times$ $(0,2 \pi) \times(0, \pi):$

$$
\Psi(r, \varphi, \theta)=(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) \in \mathbb{R}^{3}
$$

Compute $\Psi^{*} \omega$.
Exercise 10.4. On the plane \mathbb{R}^{2} with the standard coordinates (x, y) consider the 1 -form $\theta=x \mathrm{~d} y$. Compute the integral of θ along each side of the square $[1,2] \times[3,4]$, with each of the two orientations. (There are 8 numbers to compute.)

Solution. The four integrals along the horizontal sides are zero because $\mathrm{d} y \equiv 0$ on any horizontal line.

Along a vertical line given by an equation $x=c$, with $c \in \mathbb{R}$ a constant, the vector field θ coincides with the 1 -form $c \mathrm{~d} y \in \Omega^{1}\left(\mathbb{R}^{2}\right)$, which is the differential of the function $h_{c}(x, y)=c y$. Therefore the integral of θ along a segment of such a vertical line is equal to the variation of the function h_{c} along this segment.

Along the segment $\{2\} \times[3,4]$ we have $c=2$, thus the integral of θ is 2 if we go upwards and -2 if we go downwards. Similarly, along the segment $\{1\} \times[3,4]$ we have $c=1$, thus the integral of θ is 1 if we go upwards and -1 if we go downwards.

Tensors

Exercise 10.5. Let $\mathcal{B}=\left(E_{i}\right)_{i}$ and $\widetilde{\mathcal{B}}=\left(\widetilde{E}_{j}\right)_{j}$ be two bases of a vector space $V \simeq \mathbb{R}^{n}$, and let $\mathcal{B}^{*}=\left(\varepsilon^{i}\right)_{i}$ and $\widetilde{\mathcal{B}}^{*}=\left(\widetilde{\varepsilon}^{j}\right)_{j}$ be the respective dual bases. Note that a tensor $T \in \operatorname{Ten}^{k} V$ can be written as
$T=\sum_{i_{0}, \ldots, i_{k-1}} T_{i_{0}, \ldots, i_{k-1}} \varepsilon^{i_{0}} \otimes \cdots \otimes \varepsilon^{i_{k-1}} \quad$ or as $\quad T=\sum_{j_{0}, \ldots, j_{k-1}} \widetilde{T}_{j_{0}, \ldots, j_{k-1}} \widetilde{\varepsilon}^{j_{0}} \otimes \cdots \otimes \widetilde{\varepsilon}^{j_{k-1}}$.
Find the transformation law that expresses the coefficients $\widetilde{T}_{j_{0}, \ldots, j_{k-1}}$ in terms of the coefficients $T_{i_{0}, \ldots, i_{k-1}}$.

Solution. There exists an invertible $n \times n$ matrix $\left(a_{j}^{i}\right)_{i, j \in \underline{n}}$ such that $\widetilde{E}_{j}=\sum_{i} a_{j}^{i} E_{i}$. For any k-index $J=\left(j_{0}, \ldots, j_{k-1}\right) \in \underline{n}^{k}$ we have

$$
\begin{aligned}
\widetilde{T}_{J}=T\left(\widetilde{E}_{J}\right)=T\left(\widetilde{E}_{j_{0}}, \ldots, \widetilde{E}_{j_{k-1}}\right) & =T\left(\sum_{i_{0} \in \underline{n}} a_{j_{0}}^{i_{0}} E_{i_{0}}, \ldots, \sum_{i_{k-1} \in \underline{n}} a_{j_{k-1}}^{i_{k-1}} E_{i_{k-1}}\right) \\
& =\sum_{I \in \underline{n}^{k}} a_{j_{0}}^{i_{0}} \cdots a_{j_{k-1}}^{i_{k-1}} T\left(E_{i_{0}}, \ldots, E_{i_{k-1}}\right) \\
& =\sum_{I \in \underline{n}^{k}} a_{j_{0}}^{i_{0}} \cdots a_{j_{k-1}}^{i_{k-1}} T_{I}
\end{aligned}
$$

Exercise 10.6 (Alternating covariant tensors). Let V be a finite-dimensional real vector space. Let $T \in \operatorname{Ten}^{k} V$. Suppose that with respect to some basis ε^{i} of V^{*}

$$
T=\sum_{1 \leq i_{1}, \ldots, i_{k}<n} T_{i_{1} \cdots i_{k}} \varepsilon^{i_{1}} \otimes \cdots \otimes \varepsilon^{i_{k}} .
$$

Show that T is alternating iff:
(a) for all $\sigma \in S_{k}: T_{i_{\sigma(1)} \cdots i_{\sigma(k)}}=\operatorname{sgn}(\sigma) T_{i_{1} \cdots i_{k}}$.

Solution. Suppose that T is alternating, then for all $\sigma \in S_{n}$ we have
$T_{i_{\sigma(1)}, \ldots, i_{\sigma(k)}}=T\left(E_{i_{\sigma(1)}}, \ldots, E_{i_{\sigma(k)}}\right)=\operatorname{sgn}(\sigma) T\left(E_{i_{1}}, \ldots, E_{i_{k}}\right)=\operatorname{sgn}(\sigma) T_{i_{1}, \ldots, i_{k}}$
Conversely if $T_{i_{\sigma(1)}, \ldots, i_{\sigma(k)}}=\operatorname{sgn} \sigma T_{i_{1}, \ldots, i_{k}}$ for all $\sigma \in S_{n}$, then in particular

$$
T_{\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{j}, \ldots, \alpha_{k}}=-T_{\alpha_{1}, \ldots, \alpha_{j}, \ldots, \alpha_{i}, \ldots, \alpha_{k}}
$$

Then for any $X_{1}, \ldots, X_{k} \in V$ the multi-linearity of T yields (we use the summation convention where repeated indices are summed over)

$$
\begin{aligned}
& T\left(X_{1}, \ldots, X_{i}, \ldots, X_{j}, \ldots, X_{k}\right) \\
& =T\left(X_{1}^{\alpha_{1}} E_{\alpha_{1}}, \ldots, X_{i}^{\alpha_{i}} E_{\alpha_{i}}, \ldots, X_{j}^{\alpha_{j}} E_{\alpha_{j}}, \ldots, X_{k}^{\alpha_{k}} E_{\alpha_{k}}\right) \\
& =X_{1}^{\alpha_{1}} \ldots X_{k}^{\alpha_{k}} T\left(E_{\alpha_{1}}, \ldots, E_{\alpha_{i}}, \ldots, E_{\alpha_{j}}, \ldots, E_{\alpha_{k}}\right) \\
& =-X_{1}^{\alpha_{1}} \ldots X_{k}^{\alpha_{k}} T\left(E_{\alpha_{1}}, \ldots, E_{\alpha_{j}}, \ldots, E_{\alpha_{i}}, \ldots, E_{\alpha_{k}}\right) \\
& =-T\left(X_{1}, \ldots, X_{j}, \ldots, X_{i}, \ldots, X_{k}\right)
\end{aligned}
$$

Hence T is alternating.
(b) $T\left(\ldots, X_{s}, \ldots, X_{t}, \ldots\right)=-T\left(\ldots, X_{s}, \ldots, X_{t}, \ldots\right)$

Solution. Both sides are multilinear in the ω^{i} and so the result follows from the one for the basis covectors $\omega^{i}=\varepsilon^{\ell_{i}}$, which we have seen in the lecture.

Nevertheless, let us carry out the argument in detail. In the lecture we saw

$$
\varepsilon^{\ell_{1}} \wedge \cdots \wedge \varepsilon^{\ell_{k}}\left(X_{1}, \ldots, X_{k}\right)=\operatorname{det}\left(\varepsilon^{\ell_{r}}\left(X_{j}\right)\right)_{r}^{j}
$$

(on the right hand side we have the determinant of a $k \times k$ matrix ($r, j=$ $1, \ldots k$; think of j as the column index and r as the row index).
Now for arbitrary covectors $\omega^{r}=\sum_{\ell=1}^{n} \omega_{\ell}^{r} \varepsilon^{\ell}$ we have (for the first equality we use the multilinearity of the wedge product)

$$
\begin{aligned}
\omega^{1} \wedge \cdots \wedge \omega^{k}\left(X_{1}, \ldots, X_{k}\right) & =\sum_{\ell_{1}=1}^{n} \cdots \sum_{\ell_{k}=1}^{n} \omega_{\ell_{1}}^{1} \cdots \omega_{\ell_{k}}^{k} \varepsilon^{\ell_{1}} \wedge \cdots \wedge \varepsilon^{\ell_{k}}\left(X_{1}, \ldots, X_{k}\right) \\
& =\sum_{\ell_{1}=1}^{n} \cdots \sum_{\ell_{k}=1}^{n} \omega_{\ell_{1}}^{1} \cdots \omega_{\ell_{k}}^{k} \operatorname{det}\left(\varepsilon^{\ell_{r}}\left(X_{j}\right)\right)_{r}^{j} \\
& =\sum_{\ell_{1}=1}^{n} \cdots \sum_{\ell_{k}=1}^{n} \omega_{\ell_{1}}^{1} \cdots \omega_{\ell_{k}}^{k} \operatorname{det}\left(\begin{array}{ccc}
\varepsilon^{\ell_{1}}\left(X_{1}\right) & \cdots & \varepsilon^{\ell_{1}}\left(X_{k}\right) \\
\vdots & & \vdots \\
\varepsilon^{\ell_{k}}\left(X_{1}\right) & \cdots & \varepsilon^{\ell_{k}}\left(X_{k}\right)
\end{array}\right) \\
& =\operatorname{det}\left(\omega^{r}\left(X_{j}\right)\right)_{r}^{i}
\end{aligned}
$$

where in the last step we multiplied the r-th line by $\omega_{\ell_{r}}^{r}$ and replaced $\sum_{\ell_{r}=1}^{n} \omega_{\ell_{r}}^{r} \ell_{r}^{\ell_{r}}=$ ω^{r}.

