Hanmonic oscillator.

Most impontont basic system both in clessical and quantum phyrics.* Here we will introduce The basics of the quantum harmenic orvillater. Till men we heve coulidered quantrom systems which are discrete so the Hilbent space was fin ite and we could treat it entively thangh linear afebra. The harmonic oscillator is a continuous system with imfin.'le dimensional Hilbert sgace.

Nevathelen we can enenticlly treat this system by using an affebraic fame lism.

Plan of there rober.
(1) Hormanis ogsillatos Hamiltmion.
(2) Geation and ammihilation orevater
(3) Algebraic diagonalisation of tramiltonian.
(4) Elgenstater in nosition remerentation.

* frexample the eletronsjretifield is an infinite colletion of inan orcilens
(1) Harmanic oscilletor Hamiltonion.

The rlastical houmonie oscillecon is em elastic spining 1 Mun- The energs of e man atteched to the sping is canshimuted by the Kimetic enengy $\frac{1}{2} m r^{2}=\frac{p^{2}}{2 m}$ (with $p=m r$) and the patential enengy $\frac{1}{2} k x^{2} \quad$ (Face $=-k x$).
S. The tohal evengy or Hamiltonion is

$$
H=\frac{P^{2}}{2 m}+\frac{1}{2} k x^{2} .
$$

(λ_{0} le have $x=$ position of man mecasured from equilitriam pobition

Classical equations of motion:

$$
\left\{\begin{array}{l}
p=m \dot{x} \quad \text { or reshaps im mave fam } \\
\dot{p}=-k x \quad \text { form } \quad m \ddot{x}=-k x .
\end{array}\right.
$$

Solution

$$
\begin{aligned}
& x(t)=A \cos \omega t+B \sin \omega t \\
& p(t)=m \dot{x}(t)=-A \omega \sin \omega t+B \omega \cos \omega t
\end{aligned}
$$

and replecing cosart \& simat in rer $\ddot{x}=-k x$ we find $-m \omega^{2}=-K \Rightarrow \frac{\sqrt{\frac{K}{m}}}{7}$. Prequeng of suillation.
\#

Now et in turm to the quantum formelism.
a) The state of the system is dencuibed by "vectons" in the Hithent space $\underbrace{L^{2}(\mathbb{R})}=\mathcal{L}$
functions $\psi: \mathbb{R} \rightarrow \mathbb{C}$

$$
x \mapsto \psi(x) \in \mathbb{C}
$$

such that $\int_{-\infty}^{+\infty} d x|\psi(x)|^{2}=1$ (ar finite $<\infty$)

So "shate rectas" are mow square imkegrehl ware fots
In Direc's motation $\psi(x)=\langle x \mid \psi\rangle$.
b) Observables position and momentum \hat{x} and $\hat{\rho}$ are maw "operators" (ar infinite dimensional matrion) acting on function of $L^{2}(\mathbb{R})$ (on recto of thither t spec e).

The correspondence principle says:

$$
\left\{\begin{array}{l}
(\hat{x} \psi)(x)=x \psi(x) \\
(\hat{p} \psi)(x)=-i \hbar \frac{\partial}{\partial x} \psi(x)
\end{array}\right.
$$

How can we eucken stand the second relation? Apply the relation ho a plane wave $\psi(x)=e^{+i \frac{2 \pi x}{\lambda}}$ with wave length λ. We find $\hat{p} \psi=\frac{2 \pi \hbar}{\lambda} \psi$ so the associated momentum is $\frac{2 \pi \hbar}{d}=\frac{h}{d}$ (since $\left.\hbar=\frac{h}{2 \pi}\right)$. This is compatith with the De Broglie relation giving wavelength $\frac{h}{P}=d$ to a particle of momentum p.
c) Now simply cprly the correspandence principll to the Hamiltonian of the harusuric oicilletor and we get he quantum haviltonion of the harm ose:

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} k \hat{x}^{2}
$$

Nok hat introducing the frepuency $\omega=\sqrt{\frac{k}{m}}$ we heve $k=m \omega^{2}$ and the flomillonion is usuclly defined as

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}
$$

$T_{n} i$ is an operater acting on functiar $f L^{2}\left(\mathbb{R}^{3}\right)$.

$$
\begin{aligned}
&(\hat{H} \psi)(x)=\frac{1}{2 m}\left(\hat{p}^{2} \psi\right)(x)+\frac{1}{2} m \omega^{2}\left(\hat{x}^{2} \psi\right)(x) \\
&=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)+\frac{1}{2} m \omega^{2} x^{2} \psi(x) \\
&=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} m \omega^{2} x^{2}\right) \psi(x) \\
& \text { A differenticl uprelor }
\end{aligned}
$$

d) Canmutation reletion of position and momethum.

In fart \hat{x} and \hat{p} salisfy an ofgetraic reblion (the commentation rebation) which will allow us to besically une algetra insted of analusis with eifferential aperatous to solve Ris syrtom.

The commulator between two operators a unatries $A \& B$ is by definitia $[A, B] \equiv A B-B A$.

We here $\quad[\hat{x}, \hat{p}]=i \hbar$
Proof: $[\hat{x}, \hat{p}]=\hat{x} \hat{\rho}-\hat{\rho} \hat{x}$ apply this on a state ψ :

$$
(\hat{x} \hat{p}-\hat{p} \hat{x}) \psi=\hat{x}(\hat{p} \psi)-\hat{p}(\hat{x} \psi)
$$

This is a function of $x \in \mathbb{R}^{2}$:

$$
x(-i \hbar \frac{\partial}{\partial x} \psi /(x)-\underbrace{\left(-i \hbar \frac{\partial}{\partial x}\right)(x \psi(x))}_{\left(-i \hbar \psi(x)-i \hbar x \frac{\partial \psi}{\partial x}\right)}
$$

$$
\begin{aligned}
& =-i \hbar \underset{x}{x} \frac{\partial \dot{\psi}^{\prime}}{\partial x}+i \hbar \psi(x)+i \hbar x, \frac{\partial^{\prime} \dot{\psi}}{\partial x} \\
& =\underbrace{i \hbar(x) .}_{(i \hbar \mathcal{L}) \psi . \quad(i \hbar \text { timen "identit"). }}
\end{aligned}
$$

Im other wods we shaued hat

$$
[\hat{x}, \hat{p}] \psi=i \hbar \psi
$$

which mears $[\hat{x}, \hat{p}]=i \hbar$.
(2) Creation and anmilhilatia operators.

Now we introduce an algebraic formalism that preys a vary important role in quantum theory (and can be extended much beyond the harmonic oscillator). Ir particular the i formalism is et the basis of the guant-un dercriptia of the modes of the electronagudiz field.

Since the has units of evengy $=5 \cdot 5 \cdot \frac{1}{5}=5$. its a good idea to write down:

$$
\hat{H}=\hbar \omega\left(\frac{\hat{p}^{2}}{2 m \hbar \omega}+\frac{m \omega}{2 \hbar} \hat{x}^{2}\right)
$$

Then we try to factaniza His "degree hoo pol expienion" but with " "little" extra terms due to mon commutation of $\hat{x} \& \hat{p}$;

$$
\begin{aligned}
\hat{H} & =\hbar \omega\left(\frac{\hat{p}}{\sqrt{2 \mu \hbar \omega}}+i \sqrt{\frac{m \omega}{2 \hbar}} \hat{x}\right)\left(\frac{\hat{p}}{\sqrt{2 \mu \hbar \omega}}-i \sqrt{\frac{\mu \omega}{2 \hbar} \hat{x}}\right) \\
& -\hbar \omega i \sqrt{\frac{\mu \omega}{2 \hbar}} \frac{1}{\sqrt{2 m \hbar \omega}}(\underbrace{(\hat{x} \hat{p}-\hat{p} \hat{x})}_{i \hbar}
\end{aligned}
$$

So we find:

$$
\hat{H}=\hbar \omega\left(\frac{\hat{p}}{\sqrt{2 m \hbar \omega}}+i^{\prime} \sqrt{\frac{m \omega}{2 \hbar}} \hat{x}\right)\left(\frac{\hat{p}}{\sqrt{2 \mu \hbar \omega}}-i^{\prime} \sqrt{\frac{\mu \omega}{2 \hbar}} \hat{x}\right)+\frac{\hbar \omega}{2} .
$$

This sugsent to define

$$
\left\{\begin{array}{l}
a=\frac{\hat{p}}{\sqrt{2 m \hbar \omega}}-i \sqrt{\frac{m \omega}{2 \hbar}} \hat{x} \\
a^{+}=\frac{\hat{p}}{\sqrt{2 m i t \omega}}+i \sqrt{\frac{m \omega}{2 \hbar}} \hat{x}
\end{array}\right.
$$

(Note we can show $\hat{p}^{+}=\hat{p}$ as it should fo an observes be)

$$
\Rightarrow \vec{H}=\hbar \omega\left(a^{+} a+\frac{1}{2}\right)
$$

The cperctas a \& a^{+}are called annihiblion and crection operalors for recsas nat w, ll becom clear later on,

Their corumutation rellia follows from the hasic rebhe $[\hat{x}, \hat{p}]=i \hbar$. Am eary exencine slewr nat

$$
\left[a, a^{+}\right]=\mathbb{L}
$$

Procf: wrik down $\left[a, a^{+}\right]=a e^{+}-c^{+} a$ and replee $a \& a^{+}$by thein definitions and use $[\hat{x}, \hat{\beta}]=i \hbar$.

Remark: In faet a \& a^{+}are finst ooven differahal gevelores $\left\{\begin{array}{l}a=\frac{1}{\sqrt{2 m \hbar \omega}}\left(-i \hbar \frac{\partial}{\partial x}\right)-i \sqrt{\frac{\mu \omega}{2 \hbar}} x . \\ a^{+}=\frac{1}{2 m \hbar t \omega}\left(-i \hbar \frac{\partial}{\partial x}\right)+i \sqrt{\frac{\mu \omega}{2 \hbar}} x .\end{array}\right.$
(3) Diagomelisation of \widehat{H} and interpetction of a \& a^{t} :

We seak eifencilues and cigenvectors of \hat{H}. So we solve: $\quad \hat{H}\left|\psi_{\mu}\right\rangle=E_{\mu}\left|\psi_{\mu}\right\rangle \quad$ or equivalubly

$$
a^{+} a\left|\psi_{m}\right\rangle=\left(\frac{E_{M}}{\hbar \omega}-\frac{1}{2}\right)\left|\psi_{m}\right\rangle
$$

We thus want eigenrectors and cigenveluen of $a^{+} a$. We define

$$
N \equiv a^{+} a
$$

and bok at $[N, a]$ and $\left[N, a^{+}\right]$.

$$
\left.\begin{array}{rl}
{[N, a]} & =N a-a N=a^{+} a^{2}-a a^{+} a \\
& =a^{+} a^{2}-\left(1+a^{+} a\right) a=-a \\
\Rightarrow[N, a]=-a
\end{array}\right] .
$$

Fran the $a_{\text {fabre }}[N, a]=-a$ \& $\left[N, a^{+}\right]=a^{+}$ we can deduce the spectrum of $a^{+} a=N$. Indeed let $N\left(\psi_{M}\right)=\mu_{\mu}\left|\psi_{M}\right\rangle \quad\left(\right.$ here $\left.\mu_{m}=\frac{E_{m}}{\hbar_{1}}-\frac{1}{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \underbrace{a N}\left|\psi_{m}\right\rangle=\mu_{m} a\left|\psi_{m}\right\rangle \\
& \\
& N a+a \sin w[N, a]=-a \text { i.e } N a-a N=-a \\
& \Rightarrow \quad N\left(a\left|\psi_{m}\right\rangle\right)=\left(\mu_{m}-1\right) a\left|\psi_{m}\right\rangle .
\end{aligned}
$$

in wads if $\left|\psi_{m}\right\rangle$ has civ μ_{m} then al| m_{m} hes e,v $\mu_{m}-1$, similarly $a^{2} \mid \psi_{m}$) has c.v $\mu_{m}-2, \ldots$ So m or a is a ladder operator which bower ho energy by are unit

- Similarly $N\left|\psi_{m}\right\rangle=\mu_{m}\left|\psi_{m}\right\rangle \Rightarrow a^{+} \lambda\left|\psi_{m}\right\rangle=\mu_{m} a^{+}\left(\psi_{m}\right)$

$$
\begin{aligned}
\Rightarrow & N a^{+}\left|\psi_{m}\right\rangle=\left(\mu_{m}+1\right) a^{+}\left|\psi_{m}\right\rangle \\
& \left.\left.\lambda\left(a^{+}\right)^{2} \mid \psi_{m}\right)=\left(\mu_{m}+2\right)\left(a^{+}\right)^{2} \mid \psi_{m}\right),
\end{aligned}
$$

and ${a^{+}}^{+}$is a Coder eporether that raiser the energy byovemit.
finelly $N=c^{+} a$ is a foritine semi def aperator.
Indeed $\langle\psi / \lambda \mid \psi\rangle=\left\langle\psi\left(a^{+} a|\psi\rangle=\| a|\psi\rangle \|^{2} \geqslant 0\right.\right.$.
Thus all eigenvelven mart be $\geqslant 0$, The only wey is h heve μ_{μ} integer and also

$$
\left.a\left|\psi_{0}\right\rangle=0.1 \psi_{0}\right\rangle=0 .
$$

Olruwine the ladder op a wanld rend us bo regathe enengy stetes, G (imporsible).

Im summery $\quad a_{a}^{+}\left|\psi_{M}\right\rangle=m\left|\psi_{m}\right\rangle \quad M=0,32 \ldots$ \uparrow inkeger cigenvicua

The standand ratation adopted is $\left.1 \psi_{m}\right\rangle=|m\rangle$.

$$
\begin{aligned}
& \Rightarrow a^{+} a|m\rangle=m|m\rangle=\left(\frac{E_{m}}{\hbar \omega}-\frac{1}{2}\right)|m\rangle \\
& \Rightarrow \quad E_{m}=\hbar \omega\left(m+\frac{1}{2}\right)
\end{aligned}
$$

Summerizi-g:

$$
\begin{aligned}
& \hat{H}=\hbar \omega\left(a^{+} a+\frac{1}{2}\right) \\
& \hat{H}|m\rangle=\underbrace{\hbar \omega\left(m+\frac{1}{2}\right)}_{\substack{\text { eijenveluen. } \\
\text { eijenvedtern }}}|m\rangle ; m=0,1,2,3 \ldots
\end{aligned}
$$

$N=a^{+} a$ is a "mumber operetrn" which count's the mumber of excitations in stote /MD

so called sround state $|0\rangle$ hes zever encitations
Ladder ops $a^{+}|m\rangle \sim|m+1\rangle$ and $a|m\rangle \sim|m-1\rangle$.
Grreet mamalisation: $\quad a^{+}|m\rangle=\sqrt{\mu+1}|m+1\rangle$ and $a(m)=\sqrt{\mu}|m\rangle$
Indead this is implied by $\langle m| a^{+} a|m\rangle=m$ and $\langle m| a a^{+}(m)=m+1$.

Pcreatherin
Impotant exampl of quantion harmanic osellecer
in mature,

Each mode of the free electronegruetie field in vaccuum is an harmonic oscilletor. For a mode of weme bugh λ and frequence ω with $2 \pi \omega=\frac{C}{\lambda}$ i ce $\omega=c k$ (with $k=\frac{2 \pi}{d}$ the weve number): the Hownithonion of the modr ω_{k} is:

$$
\widehat{H_{k}}=\hbar \omega_{k}\left(a_{k}^{+} a_{k}+\frac{1}{2}\right)=\left(\begin{array}{l}
\text { fuersy of a pheton } \hbar \omega_{k} \text { timaed } \\
\text { mamber of phedons }+ \\
\text { "vaccurum enengy" term }
\end{array}\right)
$$

For a out of many mader (say in sam wave gevide):

$$
\hat{H}=\sum_{k} \hbar \omega_{k}\left({r_{k}^{+}}_{k} a_{k}+\frac{1}{2}\right)
$$

Thir is mot the whole story Lecan ze we shonld introduce a polarizehia index so for each mode ue hove hwo polnizhzs: $\vec{f}=\sum_{k, \lambda} \hbar \omega_{k}\left(a_{k, \lambda}^{+} a_{k, d}+\frac{1}{2}\right)$ when λ is bimery vimele x.
(4) States in Positia Representation.

The eijenstate. $\mid M$) can be represented in the "position basis" inc we want to compute $\psi_{M}(x)=\langle x \mid m\rangle$ to get a better intuition of Here stack,

Recall $a|0\rangle=0$ and $|M\rangle=\frac{a^{+}}{\sqrt{M}}|M-1\rangle$.
This is enough to obtain the pesitio representation. Indeed

$$
\begin{aligned}
& a|0\rangle=0 \text { with } a=\frac{1}{\sqrt{2 m \hbar \omega}}\left(-i \hbar \frac{\partial}{\partial x}\right)-i \sqrt{\frac{\mu \omega}{2 \hbar}} x \text { means: } \\
& \frac{1}{\sqrt{2 m \hbar \omega}}\left(-i \hbar \frac{\partial}{\partial x}\right) \psi_{0}(x)-i \sqrt{\frac{\mu \omega}{2 \hbar}} \times \psi_{0}(x)=0 . \\
& \Rightarrow D \quad \psi_{0}^{\prime}(x)=-\operatorname{m\omega } x \psi_{0}(x) . \quad \int d x C^{-\frac{1}{2} \operatorname{m\omega \lambda } e^{2}}=1 \\
& \Rightarrow \quad \psi_{0}(x)=C \cdot \exp \left(-\frac{1}{2} m \omega x^{2}\right)=\sqrt{\frac{1}{m \omega}} \frac{\int d x e^{-i x}}{=\sqrt{2 \pi}}
\end{aligned}
$$

and C is found from the mermelisetia condition: $\int d x\left|\psi_{0}(x)\right|^{2}=1$

$$
\rightarrow C=\sqrt{\frac{m \omega}{2 \pi}}
$$

$$
\text { so } \psi_{0}(x)=\sqrt{\frac{\mu \omega}{2 \sigma}} \exp \left(-\frac{1}{2} \min x^{2}\right)
$$

This is the ground state were fat of the Han manic ore.

First excited state:

$$
|1\rangle=a^{+}|0\rangle \text { with } a^{+}=\frac{1}{\sqrt{2 m i \hbar \omega}}\left(-i \hbar \frac{\partial}{\partial x}\right)-i \sqrt{\frac{\mu \omega}{2 \hbar} x}
$$

implies $\psi_{i}(x)=\frac{1}{\sqrt{2 \mu+t i \omega}}(-i \hbar) \psi_{0}^{\prime}(x)-i \sqrt{\frac{m \omega}{2 \hbar}} \underset{\underbrace{\psi_{0}^{\prime}}_{\alpha}(x)}{\psi_{0}}(x)$

$$
\begin{aligned}
& \mathcal{L} \psi_{0}^{\prime}(x) \\
& \mathcal{L} \times \psi_{0}(x) \text { also }
\end{aligned}
$$

Higher axcited states:
Ome can itarake $|m\rangle=\frac{a^{+}}{\sqrt{m}}|m-1\rangle$ and find $\psi_{M}(x) \propto$ (polynamial of degreem). $\psi_{0}(x)$

$$
\uparrow
$$

this rolynonial he camputed "explicitly" and is called the Hermite rolymanial $H_{m}(x)$.

- The number of rodes corverponch to excilation level. Ground state \rightarrow No mede
Fingt exe slek a ome mede
fecel are slak \rightarrow twe mede. ...
- This nale is valid mare gorevally for one dimationall probls. (but in highendim things set mave compliceled).

