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Exercise 11.1. Let T ∈ Tenk(V ) be a tensor on a real vector space V , and let

TI = T (EI), defined for any multi-index I = (i0, . . . , ik−1), be the coefficients of T

w.r.t. some base (Ei)i of V . Show that (σT )I = Tσ∗I for any permutation σ ∈ Sk

Solution. Denote J = (j0, . . . , jk−1) = σ∗I = (iσ(0), . . . , iσ(k−1)). Then

(σT )I = (σT )(Ei0 , . . . , Eik−1
)

= T (Eiσ(0) , . . . , Eiσ(k−1)
)

= T (Ej0 , . . . , Ejk−1
)

= Tσ∗I

�

Exercise 11.2. Let M be a smooth manifold and let ω be a differential k-form on

M . We say that ω is smooth at some point p ∈ M if the component functions of ω

w.r.t. some chart ϕ (that is defined at p) are Cr at p. Show that this does not depend

on which chart ϕ we use.

Solution. Take two charts ϕ, ϕ̃ that are defined at p. Their coordinate vectors are

related by the formula ∂
∂ϕ̃j

=
∑

i
∂ϕi

∂ϕ̃j
∂
∂ϕi

. Using the transformation law for covariant

k-tensors, we have

ω̃J =
∑

I=(i0,...,ik−1)∈nk

∂ϕi0

∂ϕ̃j0
· · · ∂ϕ

ik−1

∂ϕ̃jk−1
ωI .

(Note that the sum is over all k-indices I, not just the increasing indices.)

If the functions ωI are Cr at p, since the functions ∂ϕi

∂ϕj
are also Cr (because the

transition map ϕ ◦ ϕ̃−1 is Cr+1) we conclude that the functions ω̃J are Cr at p. �

Exercise 11.3. The goal of this exercise is to show that the wedge product of alter-

nating covariant tensors in a real vector space V is associative.

(a) If a tensor T ∈ Tenk V is alternating, show that A(T ) = k!T .

(b) For two tensors S ∈ Tenk V , T ∈ Ten` V , show that

A(A(S)⊗ T ) = k!A(S ⊗ T )

A(S ⊗A(T )) = `!A(S ⊗ T ).

(c) Show that the wedge product of alternating tensors S ∈ Altk V , T ∈ Alt` V ,

R ∈ Altm V is associative:

S ∧ (T ∧R) = S ∧ T ∧R = (S ∧ T ) ∧R.

Solution. See Tu’s book “An Introduction to Manifolds”, Proposition 3.25. �

Exercise 11.4. Prove that for each k

k∧
T ∗M :=

∐
p∈M

k∧
T ∗pM

are vector bundles over M of rank
(
n
k

)
.

Hint: Show that given a coordinate chart (U,ϕ) of M we have a trivialization of
∧k T ∗M ; given

two such trivialization compute the transition function in terms of the change coordinates to conclude.
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Solution. Let M be a smooth manifold. We consider the set.
k∧
T ∗M := {(p,A) | p ∈M,A ∈ Altk(TpM,R)}

Denote π :
∧k T ∗M →M the projection map (p,A) 7→ p.

To give a smooth manifold structure to the set
∧k T ∗M we will use an atlas of local

parametrizations. For each smooth chart (U,ϕ) of M we have a local parametrization

Φ of
∧k T ∗M given by

Φ : ϕ(U)× Rn
k
↗ → π−1(U)

(x, a) 7→ (p = ϕ−1(x), A =
∑

I=(i0,...,ik−1)∈nk↗
aI dϕi0 |p ∧ · · · ∧ dϕik−1 |p).

Let (Ũ , ϕ̃) be a second chart of M and let Φ̃ be the corresponding local parametriza-

tion of
∧k T ∗M , given by

Φ̃ : ϕ̃(Ũ)× Rn
k
↗ → π−1(Ũ)

(x̃, ã) 7→ (p = ϕ̃−1(x̃), A =
∑

J=(j0,...,jk−1)∈nk↗
ãJ dϕ̃j0 |p ∧ · · · ∧ dϕ̃jk−1 |p).

The transition map from Φ to Φ̃ is

Φ̃−1 ◦ Φ : Φ(U ∩ Ũ)× Rn
k
↗ → Φ̃(U ∩ Ũ)× Rn

k
↗

(x, a) 7→ (x̃ = ϕ̃ ◦ ϕ−1(x), ã),

where

ãJ =
∑

I=(i0,...,ik−1)∈nk

∂ϕi0

∂ϕ̃j0
· · · ∂ϕ

ik−1

∂ϕ̃jk−1
aI .

(To perform this sum, the function I 7→ aI , which is initially defined only for increas-

ing k-indices, must be extended to an alternating function defined on all k-indices.)

These parametrizations Φ make
∧k T ∗M a smooth manifold by the “one-step

smooth manifolds” theorem. To apply this theorem we must verify that all the

hypotheses are satisfied. The first 3 hypotheses clearly hold, therefore
∧k T ∗M is a

locally Euclidean, second countable topological space with a smooth structure. We

must check the last hypothesis, which ensures that
∧k T ∗M is Hausdorff.

Consider two distinct points (pi, A
i) ∈

∧k T ∗M , with i = 0, 1. Take respective

charts (Ui, ϕi) such that pi ∈ Ui (we choose the same chart if p0 = p1), and let

(xi, a
i) = Φ−1

i (pi, A
i). We have to find sets Wi ⊆ Dom(Φi) = φi(Ui)×Rn

k
↗ such that

the two sets Φi(Wi) (for i = 0, 1) are disjoint. If the two points pi are distinct, then

we can find respective open neighborhoods Vi ⊆ Ui that are disjoint, and then we

set Wi = φi(Vi) × Rn
k
↗ , so that the sets Φi(Wi) = π−1(Vi) are disjoint. Otherwise,

if p0 = p1, then, as said above, we may assume that ϕ0 = ϕ1. In this case we may

obtain disjoint open neighborhoods of the points (pi, A
i) by applying the open map

Φ0 to two disjoint open neighborhoods of the points (xi, a
i) in the (Hausdorff!) space

φ0(V0)×Rn
k
↗ . This concludes the proof that M is a smooth manifold with the maps

Φ as smooth local parametrizations.

In addition, each map Φ : (x, a) 7→ (p = ϕ−1(x), A =
∑
. . . ) is linear on the fibers

(i.e. if we fix x we get a linear map a 7→ A). This shows that
∧k T ∗M is a vector

bundle admitting the maps Φ as local trivializations. �

Exercise 11.5 (to hand in ). For a point p ∈ R3 and vectors v, w ∈ TpR3 ≡ R3

we define ω|p(v, w) := det(p | v | w). Show that ω is a smooth differential 2-form

on R3, and express ω as a linear combination of the elementary alternating 2-forms

determined by the standard coordinate chart (x0, x1, x2).

Exercise 11.6 (Some properties of the pullback of differential forms). For F : M →
N a smooth map between smooth manifolds, ω ∈ Ωk(N), β ∈ Ω`(N) we have:

(a) F ∗(α ∧ β) = F ∗(α) ∧ F ∗(β).
2
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Solution. Fix p ∈M and X0, . . . , Xk+`−1 ∈ TpM . We have to show that

F ∗(αF (p) ∧ βF (p))(X0, . . . , Xk+`−1) = (F ∗αF (p) ∧ F ∗αF (p))(X0, . . . , Xk+`−1).

From the definition of pullback and wedge product we have

F ∗(αF (p) ∧ βF (p))(X0, . . . , Xk+`−1)

= αF (p) ∧ βF (p) (F∗X0, . . . , F∗Xk+`−1)

=
1

k! `!

∑
σ∈Sk+`

sgnσ αF (p)(F∗Xσ(0), . . . , F∗Xσ(k−1))βF (p)(F∗Xσ(k), . . . , F∗Xσ(k+`−1))

=
1

k! `!

∑
σ∈Sk+`

sgnσ F ∗αF (p)(Xσ(0), . . . , Xσ(k−1))F
∗βF (p)(Xσ(k), . . . , Xσ(k+`−1))

= (F ∗αF (p) ∧ F ∗βF (p))(X0, . . . , Xk+`−1).

�

(b) In any coordinate chart yi on N ,

F ∗

 ∑
I=(i0,...,ik−1)

0≤i0,...,ik−1<n

ωI dyI

 =
∑

I=(i0,...,ik−1)
0≤i0,...,ik−1<n

(ωI ◦ F ) d(yi0 ◦ F ) ∧ · · · ∧ d(yik−1 ◦ F ).

Solution. Observation: From the definition of the pullback F ∗ it follows im-

mediately that

F ∗(ω + η) = F ∗ω + F ∗η, F ∗(fω) = (f ◦ F )F ∗ω

for ω, η ∈ Ωk(N), f ∈ C∞(N). In addition to this we use the following

properties of the pullback of 1-forms: let f ∈ C∞(N), and ω ∈ Ω1(N), then

F ∗ df = d(f ◦ F ) and F ∗(fσ) = (f ◦ F )F ∗σ.

Denoting I = (i0, . . . , ik−1) an increasing multi-index (i.e. such that 0 ≤
i0, . . . , ik−1 < n), we have

F ∗

(∑
I

ωI dyI

)
= F ∗

(∑
I

ωI dyi0 ∧ · · · ∧ dyik−1

)
=
∑
I

(ωI ◦ F )F ∗(dyi0 ∧ · · · ∧ dyik−1)

=
∑
I

(ωI ◦ F )(F ∗ dyi0) ∧ · · · ∧ (F ∗ dyik−1)

=
∑
I

(ωI ◦ F ) d(yi0 ◦ F ) ∧ · · · ∧ d(yik−1 ◦ F )

�

(c) F ∗(ω) ∈ Ωk(M).

Solution. The last line above is a local expression for F ∗ω defined on the

preimage of the domain of the chart (yi) by F . The coefficients ωI ◦ F are

smooth because ωI = ωi0,...,ik−1
are the component functions of a k-form and

hence smooth. The functions yis ◦ F are smooth as well and hence their

differentials are smooth 1-forms. Now the only missing ingredient is that the

wedge product of a smooth differential forms is a smooth differential form.

But this is clear because the component functions of the wedge product are

sums of products of component functions of the original forms and hence

smooth. �

Exercise 11.7. Define a 2-form ω on R3 by

ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy.

(a) Compute ω in spherical coordinates.
3
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Solution. This is the same 2-form of a previous exercise, ω|p(v, w) = det(p, v, w).

We want to express ω in polar coordinates, i.e. compute Φ∗ω where

Φ(r, θ, ϕ) = (r sin θ cosϕr sin θ sinϕ, r cos θ).

We can write Φ∗ω = a dr∧dϕ+ b dr∧dθ+ c dϕ∧dθ, where a, b, c are scalar

functions of (r, ϕ, θ) obtained as follows. Denoting p = Φ(r, θ, ϕ), we have

a = ωp

(
∂Φ

∂r
,
∂Φ

∂θ

)
= det

(
p,
∂Φ

∂r
,
∂Φ

∂θ

)
= 0

because ∂Φ
∂p = 1

rp is parallel to p. For the same reason we have

b = ωp

(
∂

∂r
,
∂

∂ϕ

)
= det

(
p,
∂Φ

∂r
,
∂Φ

∂ϕ

)
= 0.

The remaining function is

c = ωp

(
∂

∂θ
,
∂

∂ϕ

)
= det

(
p,
∂Φ

∂θ
,
∂Φ

∂ϕ

)
= . . .

Now we note that the matrix
(
p, ∂Φ

∂θ ,
∂Φ
∂ϕ

)
is very similar, differing only by a

factor r on the first column, to the Jacobian matrix of Φ,

J =

(
∂Φ

∂r
,
∂Φ

∂θ
,
∂Φ

∂ϕ

)
=

sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ

sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cos θ −r sin θ 0


whose determinant is known to be detJ = r2 sin θ. Thus we can easily

compute the determinant that we are interested in,

c = . . . = r det J = r3 sin θ.

We conclude that Φ∗ω = r3 sin θ dθ ∧ dϕ.

�

(b) Show that ω|S2 is nowhere 0.

Solution. We know that ω|p 6= 0 iff p 6= 0 because ω|p(v, w) = det(p, v, w). �

(c) Compute the exterior derivative dω.

Solution.

dω = dx ∧ dy ∧ dz + dy ∧ dz ∧ dx+ dz ∧ dx ∧ dy

= 3 dx ∧ dy ∧ dz.

�
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