Introduction to Differentiable Manifolds	
EPFL – Fall 2022	F. Carocci, M. Cossarini
Solutions Series 11 - Alternating tensor	s, differential forms 2022–12–14

Exercise 11.1. Let $T \in \text{Ten}^k(V)$ be a tensor on a real vector space V, and let $T_I = T(E_I)$, defined for any multi-index $I = (i_0, \ldots, i_{k-1})$, be the coefficients of T w.r.t. some base $(E_i)_i$ of V. Show that $(\sigma T)_I = T_{\sigma^*I}$ for any permutation $\sigma \in S_k$

Solution. Denote
$$J = (j_0, \dots, j_{k-1}) = \sigma^* I = (i_{\sigma(0)}, \dots, i_{\sigma(k-1)})$$
. Then
 $(\sigma T)_I = (\sigma T)(E_{i_0}, \dots, E_{i_{k-1}})$
 $= T(E_{i_{\sigma(0)}}, \dots, E_{i_{\sigma(k-1)}})$
 $= T(E_{j_0}, \dots, E_{j_{k-1}})$
 $= T_{\sigma^* I}$

Exercise 11.2. Let M be a smooth manifold and let ω be a differential k-form on M. We say that ω is smooth at some point $p \in M$ if the component functions of ω w.r.t. some chart φ (that is defined at p) are \mathcal{C}^r at p. Show that this does not depend on which chart φ we use.

Solution. Take two charts φ , $\tilde{\varphi}$ that are defined at p. Their coordinate vectors are related by the formula $\frac{\partial}{\partial \tilde{\varphi}^j} = \sum_i \frac{\partial \varphi^i}{\partial \tilde{\varphi}^j} \frac{\partial}{\partial \varphi^i}$. Using the transformation law for covariant k-tensors, we have

$$\widetilde{\omega}_J = \sum_{I=(i_0,\dots,i_{k-1})\in\underline{n}^k} \frac{\partial \varphi^{i_0}}{\partial \widetilde{\varphi}^{j_0}} \cdots \frac{\partial \varphi^{i_{k-1}}}{\partial \widetilde{\varphi}^{j_{k-1}}} \omega_I.$$

(Note that the sum is over all k-indices I, not just the increasing indices.)

If the functions ω_I are \mathcal{C}^r at p, since the functions $\frac{\partial \varphi^i}{\partial \varphi^j}$ are also \mathcal{C}^r (because the transition map $\varphi \circ \tilde{\varphi}^{-1}$ is \mathcal{C}^{r+1}) we conclude that the functions $\tilde{\omega}_J$ are \mathcal{C}^r at p. \Box

Exercise 11.3. The goal of this exercise is to show that the wedge product of alternating covariant tensors in a real vector space V is associative.

- (a) If a tensor $T \in \text{Ten}^k V$ is alternating, show that A(T) = k! T.
- (b) For two tensors $S \in \operatorname{Ten}^k V, T \in \operatorname{Ten}^\ell V$, show that

$$A(A(S) \otimes T) = k! A(S \otimes T)$$
$$A(S \otimes A(T)) = \ell! A(S \otimes T).$$

(c) Show that the wedge product of alternating tensors $S \in \operatorname{Alt}^k V$, $T \in \operatorname{Alt}^\ell V$, $R \in \operatorname{Alt}^m V$ is associative:

$$S \wedge (T \wedge R) = S \wedge T \wedge R = (S \wedge T) \wedge R.$$

Solution. See Tu's book "An Introduction to Manifolds", Proposition 3.25. \Box

Exercise 11.4. Prove that for each k

$$\bigwedge^k T^*M:=\coprod_{p\in M}\bigwedge^k T_p^*M$$

are vector bundles over M of rank $\binom{n}{k}$.

Hint: Show that given a coordinate chart (U, φ) of M we have a trivialization of $\bigwedge^k T^*M$; given two such trivialization compute the transition function in terms of the change coordinates to conclude.

Solution. Let M be a smooth manifold. We consider the set.

$$\bigwedge^{k} T^*M := \{ (p, A) \mid p \in M, A \in \operatorname{Alt}^{k}(T_pM, \mathbb{R}) \}$$

Denote $\pi : \bigwedge^k T^*M \to M$ the projection map $(p, A) \mapsto p$.

To give a smooth manifold structure to the set $\bigwedge^k T^*M$ we will use an atlas of local parametrizations. For each smooth chart (U, φ) of M we have a local parametrization Φ of $\bigwedge^k T^*M$ given by

$$\begin{split} \Phi : & \varphi(U) \times \mathbb{R}^{\underline{n}_{\mathcal{F}}^{k}} \to \pi^{-1}(U) \\ & (x,a) & \mapsto (p = \varphi^{-1}(x), A = \sum_{I = (i_{0}, \dots, i_{k-1}) \in \underline{n}_{\mathcal{F}}^{k}} a_{I} \, \mathrm{d}\varphi^{i_{0}}|_{p} \wedge \dots \wedge \mathrm{d}\varphi^{i_{k-1}}|_{p}) \end{split}$$

Let $(\widetilde{U}, \widetilde{\varphi})$ be a second chart of M and let $\widetilde{\Phi}$ be the corresponding local parametrization of $\bigwedge^k T^*M$, given by

$$\widetilde{\Phi}: \quad \widetilde{\varphi}(\widetilde{U}) \times \mathbb{R}^{\underline{n}^{k}_{\nearrow}} \quad \to \quad \pi^{-1}(\widetilde{U}) \\ (\widetilde{x}, \widetilde{a}) \qquad \mapsto \quad (p = \widetilde{\varphi}^{-1}(\widetilde{x}), A = \sum_{J = (j_{0}, \dots, j_{k-1}) \in \underline{n}^{k}_{\nearrow}} \widetilde{a}_{J} \, \mathrm{d}\widetilde{\varphi}^{j_{0}}|_{p} \wedge \dots \wedge \mathrm{d}\widetilde{\varphi}^{j_{k-1}}|_{p}).$$

The transition map from Φ to $\widetilde{\Phi}$ is

$$\begin{array}{lll} \widetilde{\Phi}^{-1} \circ \Phi : & \Phi(U \cap \widetilde{U}) \times \mathbb{R}^{\underline{n}^{k}_{\mathcal{F}}} & \to & \widetilde{\Phi}(U \cap \widetilde{U}) \times \mathbb{R}^{\underline{n}^{k}_{\mathcal{F}}} \\ & (x,a) & \mapsto & (\widetilde{x} = \widetilde{\varphi} \circ \varphi^{-1}(x), \widetilde{a}), \end{array}$$

where

$$\widetilde{a}_J = \sum_{I = (i_0, \dots, i_{k-1}) \in \underline{n}^k} \frac{\partial \varphi^{i_0}}{\partial \widetilde{\varphi}^{j_0}} \cdots \frac{\partial \varphi^{i_{k-1}}}{\partial \widetilde{\varphi}^{j_{k-1}}} a_I.$$

(To perform this sum, the function $I \mapsto a_I$, which is initially defined only for increasing k-indices, must be extended to an alternating function defined on all k-indices.)

These parametrizations Φ make $\bigwedge^k T^*M$ a smooth manifold by the "one-step smooth manifolds" theorem. To apply this theorem we must verify that all the hypotheses are satisfied. The first 3 hypotheses clearly hold, therefore $\bigwedge^k T^*M$ is a locally Euclidean, second countable topological space with a smooth structure. We must check the last hypothesis, which ensures that $\bigwedge^k T^*M$ is Hausdorff.

Consider two distinct points $(p_i, A^i) \in \bigwedge^k T^*M$, with i = 0, 1. Take respective charts (U_i, φ_i) such that $p_i \in U_i$ (we choose the same chart if $p_0 = p_1$), and let $(x_i, a^i) = \Phi_i^{-1}(p_i, A^i)$. We have to find sets $W_i \subseteq \text{Dom}(\Phi_i) = \phi_i(U_i) \times \mathbb{R}^{\underline{n}_{\neq}^k}$ such that the two sets $\Phi_i(W_i)$ (for i = 0, 1) are disjoint. If the two points p_i are distinct, then we can find respective open neighborhoods $V_i \subseteq U_i$ that are disjoint, and then we set $W_i = \phi_i(V_i) \times \mathbb{R}^{\underline{n}_{\neq}^k}$, so that the sets $\Phi_i(W_i) = \pi^{-1}(V_i)$ are disjoint. Otherwise, if $p_0 = p_1$, then, as said above, we may assume that $\varphi_0 = \varphi_1$. In this case we may obtain disjoint open neighborhoods of the points (p_i, A^i) by applying the open map Φ_0 to two disjoint open neighborhoods of the points (x_i, a^i) in the (Hausdorff!) space $\phi_0(V_0) \times \mathbb{R}^{\underline{n}_{\neq}^k}$. This concludes the proof that M is a smooth manifold with the maps Φ as smooth local parametrizations.

In addition, each map $\Phi : (x, a) \mapsto (p = \varphi^{-1}(x), A = \sum \dots)$ is linear on the fibers (i.e. if we fix x we get a linear map $a \mapsto A$). This shows that $\bigwedge^k T^*M$ is a vector bundle admitting the maps Φ as local trivializations.

Exercise 11.5 (to hand in). For a point $p \in \mathbb{R}^3$ and vectors $v, w \in T_p \mathbb{R}^3 \equiv \mathbb{R}^3$ we define $\omega|_p(v,w) := \det(p \mid v \mid w)$. Show that ω is a smooth differential 2-form on \mathbb{R}^3 , and express ω as a linear combination of the elementary alternating 2-forms determined by the standard coordinate chart (x^0, x^1, x^2) .

Exercise 11.6 (Some properties of the pullback of differential forms). For $F: M \to N$ a smooth map between smooth manifolds, $\omega \in \Omega^k(N)$, $\beta \in \Omega^\ell(N)$ we have:

(a)
$$F^*(\alpha \wedge \beta) = F^*(\alpha) \wedge F^*(\beta).$$

Solution. Fix $p \in M$ and $X_0, \ldots, X_{k+\ell-1} \in \mathcal{T}_p M$. We have to show that $F^*(\alpha_{F(p)} \wedge \beta_{F(p)})(X_0, \ldots, X_{k+\ell-1}) = (F^*\alpha_{F(p)} \wedge F^*\alpha_{F(p)})(X_0, \ldots, X_{k+\ell-1}).$

From the definition of pullback and wedge product we have

$$F^{*}(\alpha_{F(p)} \land \beta_{F(p)})(X_{0}, \dots, X_{k+\ell-1}) = \alpha_{F(p)} \land \beta_{F(p)} (F_{*}X_{0}, \dots, F_{*}X_{k+\ell-1}) = \frac{1}{k! \, \ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sgn} \sigma \, \alpha_{F(p)}(F_{*}X_{\sigma(0)}, \dots, F_{*}X_{\sigma(k-1)}) \, \beta_{F(p)}(F_{*}X_{\sigma(k)}, \dots, F_{*}X_{\sigma(k+\ell-1)}) = \frac{1}{k! \, \ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sgn} \sigma \, F^{*} \alpha_{F(p)}(X_{\sigma(0)}, \dots, X_{\sigma(k-1)}) \, F^{*} \beta_{F(p)}(X_{\sigma(k)}, \dots, X_{\sigma(k+\ell-1)}) = (F^{*} \alpha_{F(p)} \land F^{*} \beta_{F(p)})(X_{0}, \dots, X_{k+\ell-1}).$$

(b) In any coordinate chart y^i on N,

$$F^*\left(\sum_{\substack{I=(i_0,\ldots,i_{k-1})\\0\leq i_0,\ldots,i_{k-1}< n}}\omega_I\,\mathrm{d}y^I\right)=\sum_{\substack{I=(i_0,\ldots,i_{k-1})\\0\leq i_0,\ldots,i_{k-1}< n}}(\omega_I\circ F)\,\mathrm{d}(y^{i_0}\circ F)\wedge\cdots\wedge\mathrm{d}(y^{i_{k-1}}\circ F).$$

Solution. Observation: From the definition of the pullback F^* it follows immediately that

$$F^*(\omega + \eta) = F^*\omega + F^*\eta, \quad F^*(f\omega) = (f \circ F)F^*\omega$$

for $\omega, \eta \in \Omega^k(N)$, $f \in C^{\infty}(N)$. In addition to this we use the following properties of the pullback of 1-forms: let $f \in C^{\infty}(N)$, and $\omega \in \Omega^1(N)$, then $F^* df = d(f \circ F)$ and $F^*(f\sigma) = (f \circ F)F^*\sigma$.

Denoting $I = (i_0, \ldots, i_{k-1})$ an increasing multi-index (i.e. such that $0 \le i_0, \ldots, i_{k-1} < n$), we have

$$F^*\left(\sum_{I} \omega_I \, \mathrm{d} y^I\right) = F^*\left(\sum_{I} \omega_I \, \mathrm{d} y^{i_0} \wedge \dots \wedge \mathrm{d} y^{i_{k-1}}\right)$$

= $\sum_{I} (\omega_I \circ F) F^*(\mathrm{d} y^{i_0} \wedge \dots \wedge \mathrm{d} y^{i_{k-1}})$
= $\sum_{I} (\omega_I \circ F) (F^* \, \mathrm{d} y^{i_0}) \wedge \dots \wedge (F^* \, \mathrm{d} y^{i_{k-1}})$
= $\sum_{I} (\omega_I \circ F) \, \mathrm{d} (y^{i_0} \circ F) \wedge \dots \wedge \mathrm{d} (y^{i_{k-1}} \circ F)$

(c) $F^*(\omega) \in \Omega^k(M)$.

Solution. The last line above is a local expression for $F^*\omega$ defined on the preimage of the domain of the chart (y^i) by F. The coefficients $\omega_I \circ F$ are smooth because $\omega_I = \omega_{i_0,\ldots,i_{k-1}}$ are the component functions of a k-form and hence smooth. The functions $y^{i_s} \circ F$ are smooth as well and hence their differentials are smooth 1-forms. Now the only missing ingredient is that the wedge product of a smooth differential forms is a smooth differential form. But this is clear because the component functions of the wedge product are sums of products of component functions of the original forms and hence smooth.

Exercise 11.7. Define a 2-form ω on \mathbb{R}^3 by

$$\omega = x \, \mathrm{d}y \wedge \mathrm{d}z + y \, \mathrm{d}z \wedge \mathrm{d}x + z \, \mathrm{d}x \wedge \mathrm{d}y.$$

(a) Compute ω in spherical coordinates.

Solution. This is the same 2-form of a previous exercise, $\omega|_p(v, w) = \det(p, v, w)$. We want to express ω in polar coordinates, i.e. compute $\Phi^*\omega$ where

 $\Phi(r,\theta,\varphi) = (r\,\sin\theta\,\cos\varphi r\,\sin\theta\,\sin\varphi, r\,\cos\theta).$

We can write $\Phi^*\omega = a \, dr \wedge d\varphi + b \, dr \wedge d\theta + c \, d\varphi \wedge d\theta$, where a, b, c are scalar functions of (r, φ, θ) obtained as follows. Denoting $p = \Phi(r, \theta, \varphi)$, we have

$$a = \omega_p \left(\frac{\partial \Phi}{\partial r}, \frac{\partial \Phi}{\partial \theta} \right) = \det \left(p, \frac{\partial \Phi}{\partial r}, \frac{\partial \Phi}{\partial \theta} \right) = 0$$

because $\frac{\partial \Phi}{\partial p} = \frac{1}{r}p$ is parallel to p. For the same reason we have

$$b = \omega_p \left(\frac{\partial}{\partial r}, \frac{\partial}{\partial \varphi} \right) = \det \left(p, \frac{\partial \Phi}{\partial r}, \frac{\partial \Phi}{\partial \varphi} \right) = 0.$$

The remaining function is

$$c = \omega_p\left(\frac{\partial}{\partial\theta}, \frac{\partial}{\partial\varphi}\right) = \det\left(p, \frac{\partial\Phi}{\partial\theta}, \frac{\partial\Phi}{\partial\varphi}\right) = \dots$$

Now we note that the matrix $\left(p, \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \varphi}\right)$ is very similar, differing only by a factor r on the first column, to the Jacobian matrix of Φ ,

$$J = \left(\frac{\partial\Phi}{\partial r}, \frac{\partial\Phi}{\partial\theta}, \frac{\partial\Phi}{\partial\varphi}\right) = \begin{pmatrix} \sin\theta \cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi\\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi\\ \cos\theta & -r\sin\theta & 0 \end{pmatrix}$$

whose determinant is known to be $\det J = r^2 \sin \theta$. Thus we can easily compute the determinant that we are interested in,

 $c = \ldots = r \det J = r^3 \sin \theta.$

We conclude that $\Phi^* \omega = r^3 \sin \theta \, \mathrm{d}\theta \wedge \mathrm{d}\varphi$.

(b) Show that $\omega|_{\mathbb{S}^2}$ is nowhere 0.

Solution. We know that $\omega|_p \neq 0$ iff $p \neq 0$ because $\omega|_p(v, w) = \det(p, v, w)$. \Box (c) Compute the exterior derivative $d\omega$.

Solution.

$$d\omega = dx \wedge dy \wedge dz + dy \wedge dz \wedge dx + dz \wedge dx \wedge dy$$

= 3 dx \land dy \land dz.